scholarly journals Development and Validation of Three Potential Genotoxic Impurities by Liquid Chromatography Single Quad Mass Detector in Iomeprol

Author(s):  
Rayala Rama Rao ◽  
Gundapaneni Ravi Kumar ◽  
Vadde Megha Vardhan ◽  
Veeraswami Boddu

A liquid chromatography with single quadrupole mass detection method was developed for the determination of potential genotoxic impurities (PGIs) in the Iomeprol active pharmaceutical ingredient. Chromatographic separation was achieved on an Agilent Eclipse plus C8 column (100 mm x 2.1 mm x 1.8 μm) with 0.1% formic acid in water as mobile phase A and acetonitrile as mobile phase B in gradient elution mode at a 0.1 mL/min. Executed validation summary demonstrated that the mass detection method had highly sensitive and selective. A linear calibration curve (correlation coefficient, r> 0.999) was attained at the concentration range of 0.1-125 ppm for three PGI’s. The Limit of Detection of Imp-A, Imp-B and Imp-C in drug substance of Iomeprol is 0.05 ppm. The accuracy was confirmed by calculated recoveries (98.4-101.5%). The precision was tested at three levels: injection repeatability, analysis repeatability and intermediate precision. The calculated relative standard deviations were within the specification. The developed method was able to quantitate all three PGI’s at a concentration level of 1 µg/mL.

Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


2021 ◽  
Vol 33 (5) ◽  
pp. 1165-1168
Author(s):  
C. Purushotham Reddy ◽  
G. Venkateswara Rao ◽  
K. Ramakrishna ◽  
K.M.V. Narayana Rao

A sensitive and robust high performance liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of potential genotoxic impurity (PGI), 2-(chloromethyl)-3-methyl-4-(2,2,2-trifluoroethoxy)-pyridine hydrochloride (PyCl) in lansoprazole as per ICH Q2 guideline. In this method, PyCl and lansoprazole were well-separated from each other on Acquity UPLC BEH-C18 column (50 × 4.6 mm × 1.7 μ) in a gradient elution mode with the mobile phase consisting of 0.1% formic acid in water (mobile phase-A) and acetonitrile (mobile phase-B) at a flow rate of 0.4 mL/min. For the quantitation of Py-Cl, selective ion monitoring (SIM) mode was used with m/z 240 ion in LC-MS method. The validated method was found to be precise, accurate and linear from the range of LOQ level to 150% with respect to sample concentration and the correlation co-efficient was found to be 0.998. Limit of detection (LOD) and limit of quantifications (LOQ) were found to be 0.000012 and 0.000004 mg/mL, respectively. The validated method was found to be sensitive and the recoveries were found to be well within the range from 83.4% to 95.9% for Py-Cl. Further, the solution stability was also established as the same were found to be stable upto 24 h.


Author(s):  
Rajesh Kumar Chawla ◽  
G S N Koteswara Rao ◽  
Umasankar Kulandaivelu ◽  
Siva Prasad Panda ◽  
Rajasekhar Reddy Alavala

Abstract Objective A selective and sensitive liquid chromatography–tandem mass spectrometer (LC–MS/MS) method has been developed for the quantification of 1,1-dimethyl-3-hydroxy-pyrrolidinium bromide impurity in glycopyrrolate oral solution. Materials and method The LC–MS/MS analysis was done on X Bridge HILIC (100 × 4.6 mm, 5 μm) analytical column, and the mobile phase used was10 mM ammonium formate with 0.2% formic acid as mobile phase-A and acetonitrile as mobile phase-B with a gradient programme of 5.0 min. The flow rate used was 1.2 mL/min. Triple quadrupole mass detector coupled to positive electrospray ionization operated in multiple reactions monitoring mode was used for the quantification at m/z 116.10 ± 0.5. Results Retention time of impurity was found ~3.2 min. The method was validated in terms of specificity, linearity, accuracy, precision, range, limit of detection, limit of quantitation (LOQ) and robustness. Relative standard deviation (RSD) for system suitability was found 1.3%. Calibration plot was linear over the range of 0.050–2.000 μg/mL. Limit of detection and limit of quantification were found 0.017 and 0.051 μg/mL, respectively. The intra- and inter-day precision RSD was 2.3% and the obtained recovery at LOQ to 200% was in between 86.7 and 107.4%. Conclusion The low RSD values and high recoveries of the method confirm the suitability of the method.


Author(s):  
BENNY ANTONY ◽  
MERINA BENNY ◽  
MARY RESHMA

Objective: Development and validation of a High-Performance Liquid Chromatography (HPLC) method for the simultaneous estimation of 6-, 8-, 10-Gingerols and 6-Shogaol in ginger extract using authentic standards. Methods: The chromatographic separation was achieved by using a C18 column and a mobile phase composed of acetonitrile, ortho-phospohoric acid in water and methanol. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, the limit of detection (LOD) and limit of quantification (LOQ) according to ICH guidelines. Results: Linear calibration curves were obtained over concentration ranges of 10-250 µg/ml for 6-, 8-, 10-gingerols and 6-shogaol with determination coefficients more than 0.99 for each analyte. Intra and inter-day precisions of the method were found to be below 2% for each analyte, with relative standard deviation (% RSD) values in the range of 0.47 to 1.55% for 6-gingerol, 0.44 to 1.51% for 8-gingerol, 0.24 to 1.90% for 10-gingerol and 0.25 to 1.67% for 6-shogaol. The percentage recovery of gingerols and shogaol was obtained with an average of 99.53%, 99.97%, 100.13% and 100.53% respectively, which was well within acceptance range. Conclusion: Simple, accurate, precise and rapid HPLC method was developed for the simultaneous analysis of 6-, 8-, 10-gingerols and 6-shogaol and validated in accordance with ICH guidelines. The developed method was found to be suitable for the standardization of herbal extracts and polyherbal formulations for the content of 6-, 8-, 10-gingerols and 6-shogaol.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Yanqi Wang ◽  
Shuyi Li ◽  
Dandan Han ◽  
Kehan Meng ◽  
Miao Wang ◽  
...  

Disporopsis pernyi(Hua) Diels, which belongs to genusDisporopsis, has been widely used for the treatment of abnormal sweating, chronic cough, and so forth. An ultra-performance liquid chromatography (UPLC) analysis was developed for the determination of rutin, luteolin, quercetin, and betulinic acid inDisporopsis pernyi(Hua) Diels roots. UPLC analysis was conducted by using a Shim-pack XR-ODS column with gradient elution with the mobile phase of acetonitrile and water containing 0.1% formic acid and with a flow rate of 0.2 mL/min, detected at 210, 254, and 280 nm. The method was precise, with relative standard deviation < 2.0%. The recoveries for the four components inDisporopsis pernyi(Hua) Diels were between 98.5 and 100.9%. The average contents of rutin, luteolin, quercetin, and betulinic acid in roots were 5.63, 2.51, 3.87, and 2.41 μg/g, respectively. The method was accurate and reproducible and it can provide a quantitative basis for quality control ofDisporopsis pernyi(Hua) Diels.


2014 ◽  
Vol 50 (4) ◽  
pp. 859-868 ◽  
Author(s):  
Caroline Danziato Rodrigues ◽  
Najeh Maissar Khalil ◽  
Rubiana Mara Mainardes

In this work, we developed and validated an effective reversed-phase HPLC method with photodiode array (PDA) detection for the quantitative analysis of amphotericin B (AmB) in poly(lactide)-poly(ethylene glycol) (PLA-PEG) blend nanoparticles. Chromatographic runs were performed on a reverse phase C18 column using a mobile phase comprising a 9% acetic acid and acetonitrile mixture (40:60, v/v) under isocratic elution with a flow rate of 1 mL/min. AmB was detected at a wavelength of 408 nm. The validation process was performed considering the selectivity, linearity, precision, accuracy, robustness, limit of detection (LOD) and limit of quantitation (LOQ) of the method. A concentration range of 1-20 µg/mL was used to construct a linear calibration curve. The LOQ and LOD were 55 and 18 ng/mL, respectively. The mean recovery of AmB from the samples was 99.92% (relative standard deviation (RSD) = 0.34%, n=9), and the method was robust for changes in the flow rate of the mobile phase (maximum RSD=4.82%). The intra- and inter-assay coefficients of variation were less than 0.59%. The method was successfully used to determine the entrapment efficiency of AmB in PLA-PEG blend nanoparticles.


2019 ◽  
Vol 58 (2) ◽  
pp. 98-108 ◽  
Author(s):  
Sibel Yalçın ◽  
Emine Şükran Okudan ◽  
Özge Karakaş ◽  
Ayşe Nur Önem

Abstract Analysis of plant growth regulators (PGRs) should be approached by considering their extremely low concentrations and serious interfering effects that result from the matrix of various plant tissues. In the current research, the separation and simultaneous determination of different classes of phytohormones in 14 seaweeds collected from Turkey seashores were achieved by using solid-phase extraction (SPE) followed by a rapid and sensitive liquid chromatography tandem mass detection method. OASIS HLB (Hydrophilic-Lipophilic Balance) cartridges were successfully used for SPE process to eliminate the matrix effect and enhance the PGRs including zeatin, benzyl amino purine, indole-3-acetic acid, abscisic acid and gibberellic acid within partially different polarities. Based on the optimized experimental conditions, the method presented excellent performance related to linearity (r, 0.9996–0.9999) within the ranges of 0.5–500 ng/mL, relative standard deviation values ((1.43–2.01) for intraday and (2.36–3.50) for interday)), the limit of detection (0.01–0.84 μg/L) and the limit of quantification (0.02–2.76 μg/L). The obtained results confirm that the SPE–liquid chromatography/tandem mass spectrometry method performed is highly effective and convenient for routine analyses of trace amounts of the tested phytohormones in seaweeds and any other plant samples as well.


2019 ◽  
Vol 16 ◽  
Author(s):  
Joanna Wittckind Manoel ◽  
Camila Ferrazza Alves Giordani ◽  
Livia Maronesi Bueno ◽  
Sarah Chagas Campanharo ◽  
Elfrides Eva Sherman Schapoval ◽  
...  

Introduction: Impurity analysis is an important step in the quality control of pharmaceutical ingredients and final product. Impurities can arise from drug synthesis or excipients and even at small concentrations may affect product efficacy and safety. In this work two methods using high performance liquid chromatography (HPLC) were developed and validated for the evaluation of besifloxacin and its impurity synthesis, with isocratic elution and another with gradient elution. Method: The analysis by HPLC in isocratic elution mode was performed using a cyano column maintained at 25 °C. The mobile phase was composed by 0.5% triethylamine (pH 3.0): acetonitrile (88:12 v/v) eluted at a flow rate of 1.0 ml/min with detection at 330 nm. The gradient elution method was carried out with the same column and mobile phase components only modifying the rate between organic and aqueous phase during analysis. The procedures have been validated according to internationally accepted guidelines, observing results within acceptable limits. Results: The methods presented were found to be linear in the 140 to 260 µg/ml range for besifloxacin and 0.3 to 2.3 µg/ml for an impurity named A. The limits of detection and quantification were respectively 0.07 and 0.3 µg/ml for impurity A, with a 20 µL injection volume. The precision achieved for all analyses performed provided RSD inter-day equal to 6.47 and 6.36% for impurity A with isocratic elution and gradient, respectively. The accuracy was higher than 99% and robustness exhibited satisfactory results. In the isocratic method an analysis time of 25 min and 15 min was obtained for gradient. For impurity A, the number of theoretical plates in the isocratic mode was about 5000 while in the gradient mode it was about 45000, hence, it made the column more efficient by changing the mobile phase composition during elution. In besifloxacin raw material and in pharmaceutical product used in this study, other related impurities were present but but impurity A was searched for and not detected Conclusion: The proposed methods can be applied for quantitative determination of impurities in the analysis of the besifloxacin raw material, as well as in ophthalmic suspension of the drug, considering the quantitation limit.


1994 ◽  
Vol 59 (3) ◽  
pp. 569-574 ◽  
Author(s):  
Josef Královský ◽  
Marta Kalhousová ◽  
Petr Šlosar

The reversed-phase high-performance liquid chromatography of some selected, industrially important aromatic sulfones has been investigated. The chromatographic behaviour of three groups of aromatic sulfones has been studied. The optimum conditions of separation and UV spectra of the sulfones and some of their hydroxy and benzyloxy derivatives are presented. The dependences of capacity factors vs methanol content in mobile phase are mentioned. The results obtained have been applied to the quantitative analysis of different technical-grade samples and isomer mixtures. For all the separation methods mentioned the concentration ranges of linear calibration curves have been determined.


2020 ◽  
Vol 18 (1) ◽  
pp. 962-973
Author(s):  
Saira Arif ◽  
Sadia Ata

AbstractA rapid and specific method was developed for simultaneous quantification of hydrocortisone 21 acetate (HCA), dexamethasone (DEX), and fluocinolone acetonide (FCA) in whitening cream formulations using reversed-phase high-performance liquid chromatography. The effect of the composition of the mobile phase, analysis temperature, and detection wavelength was investigated to optimize the separation of studied components. The analytes were finally well separated using ACE Excel 2, C18 AR column having 150 mm length, 3 mm internal diameter, and 2 µm particle size at 35°C using methanol with 1% formic acid and double-distilled deionized water in the ratio of 60:40 (v/v), respectively, as the mobile phase in isocratic mode. Ten microliters of sample were injected with a flow rate of 0.5 mL/min. The specificity, linearity, accuracy, precision, recovery, limit of detection (LOD), limit of quantification (LOQ), and robustness were determined to validate the method as per International Conference on Harmonization guidelines. All the analytes were simultaneously separated within 8 min, and observed retention times of HCA, DEX, and FCA were 4.5, 5.5, and 6.9 min, respectively. The proposed method showed good linearity with the correlation coefficient, R2 = 0.999 over the range of 1–150 µg/mL for all standards. The linear regression equations were y = 12.7x + 118.7 (r = 0.999) for HCA, y = 12.9x + 106.8 (r = 0.999) for DEX, and y = 12.9x + 96.8 (r = 0.999) for FCA. The LOD was 0.25, 0.20, and 0.08 µg/mL for HCA, FCA, and DEX and LOQ was 2.06, 1.83, and 1.55 µg/mL for HCA, FCA, and DEX, respectively. The recovery values of HCA, DEX, and FCA ranged from 100.7–101.3, 102.0–102.6, and 100.2–102.0%, respectively, and the relative standard deviation for precision (intra- and interday) was less than 2, which indicated repeatability and reproducibility. The novelty of the method was described by forced degradation experimentation of all analytes in the combined form under acidic, basic, oxidative, and thermal stress. The proposed method was found to be simple, rapid, and reliable for the simultaneous determination of HCA, DEX, and FCA in cosmetics.


Sign in / Sign up

Export Citation Format

Share Document