scholarly journals A Review on In-vitro Haploid Production in Orchids

Author(s):  
Teena Jaswal ◽  
Saranjeet Kaur

The aim of writing this paper is to review production of haploids in orchids in vitro. Haploids possess half number of chromosomes and do not undergo fertilization. In vitro conditions provide necessary nutrients and conditions that are required for growth of haploid plantlets. The natural breeding cycle of orchids is very slow as well as unpredictable. To reduce this time, the technique of in vitro haploid production is used. In vitro conditions can decrease or shorten the time required for juvenile period in Orchids. Haploid plants are produced from in vitro haploid culture. This technique is useful to produce homozygous pure lines and to increase the yield of a plant.

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Qian Lou ◽  
Hongli Liu ◽  
Wen Luo ◽  
Kaili Chen ◽  
Yali Liu

Abstract Background Grape hyacinth (Muscari spp.) is one of the most important ornamental bulbous plants. However, its lengthy juvenile period and time-consuming transformation approaches under the available protocols impedes the functional characterisation of its genes in flower tissues. In vitro flower organogenesis has long been used to hasten the breeding cycle of plants but has not been exploited for shortening the period of gene transformation and characterisation in flowers. Results A petal regeneration system was established for stable transformation and function identification of colour gene in grape hyacinth. By culturing on Murashige and Skoog medium (MS) with 0.45 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 8.88 μM 6-benzyladenine (6-BA), during the colour-changing period, the flower bud explants gave rise to regeneration petals in less than 3 months, instead of the 3 years required in field-grown plants. By combining this system with Agrobacterium-mediated transformation, a glucuronidase reporter gene (GUS) was delivered into grape hyacinth petals. Ultimately, 214 transgenic petals were regenerated from 24 resistant explants. PCR and GUS quantitative analyses confirmed that these putative transgenic petals have stably overexpressed GUS genes. Furthermore, an RNAi vector of the anthocyanidin 3-O-glucosyltransferase gene (MaGT) was integrated into grape hyacinth petals using the same strategy. Compared with the non-transgenic controls, reduced expression of the MaGT occurred in all transgenic petals, which caused pigmentation loss by repressing anthocyanin accumulation. Conclusion The Agrobacterium transformation method via petal organogenesis of grape hyacinth took only 3–4 months to implement, and was faster and easier to perform than other gene-overexpressing or -silencing techniques that are currently available.


Reproduction ◽  
2000 ◽  
pp. 127-135 ◽  
Author(s):  
W Bone ◽  
NG Jones ◽  
G Kamp ◽  
CH Yeung ◽  
TG Cooper

The effects of the male antifertility agent ornidazole on glycolysis as a prerequisite for fertilization were investigated in rats. Antifertility doses of ornidazole inhibited glycolysis within mature spermatozoa as determined from the lack of glucose utilization, reduced acidosis under anaerobic conditions and reduced glycolytic enzyme activity. As a consequence, cauda epididymidal spermatozoa from ornidazole-fed rats were unable to fertilize rat oocytes in vitro, with or without cumulus cells, which was not due to transfer of an inhibitor in epididymal fluid with the spermatozoa. Under IVF conditions, binding to the zona pellucida was reduced in spermatozoa from ornidazole-fed males and the spermatozoa did not undergo a change in swimming pattern, which was observed in controls. The block to fertilization could be explained by the disruption of glycolysis-dependent events, since reduced binding to the zona pellucida and a lack of kinematic changes were demonstrated by control spermatozoa in glucose-free media in the presence of respiratory substrates. The importance of glycolysis for binding to, and penetration of, the zona pellucida, and hyperactivation in rats is discussed in relation to the glycolytic production of ATP in the principal piece in which local deprivation of energy may explain the reduced force of spermatozoa from ornidazole-fed males.


2016 ◽  
pp. 140-143
Author(s):  
N.V. Cotsabin ◽  
◽  
O.M. Makarchuk ◽  

The proportion of patients with multiple unsuccessful attempts of assisted reproductive technology (ART) is about 30% of all patients treated with the use of ART. Women with history of unsuccessful ART attempts - a special category of patients who require emergency attention and a thorough examination at the stage of preparation for superovulation stimulation,the selection of embryos and endometrium preparation for embryo transfer. The objective: to distinguish high-risk group of unsuccessful attempts based on a detailed analysis of anamnestic and clinical data of infertile women with repeated unsuccessful ART attempts that requires more in-depth study of hormonal features, ovarian reserve and condition of the endometrium. Materials and methods. For better understanding of the problem of repeated unsuccessful ART attempts and сreation of efficient infertility treatment algorithms for these couples we conducted a thorough analysis of anamnestic data of three groups of infertile women (105 patients), which were distributed by age: group I – younger than 35, the II group – from 35 to 40, the III group - over 40 years. These groups of patients were compared with each other and with the control group of healthy women (30 persons). Results. Leading stress factors in the percentage three times prevailed in the group of infertile women and had a direct connection with the fact of procedure «fertilization in vitro» and chronic stressors caused by prolonged infertility. Primary infertility was observed significantly more frequent in patients younger than 35 years (p <0.05), secondary infertility - mostly in the second and third experimental groups (p <0.05). Noteworthy significant percentage of wellknown causes of infertility and idiopathic factor in all groups, and the prevalence of tubal-peritoneal factor in the second and third experimental groups, and endocrine dysfunction in the I experimental group. The most common disorder among this category of woman was polycystic ovary syndrome. Frequency of usual miscarriage among patients of I ana II groups was two times higher than in the third group (p <0.05). Among the experimental groups the leading place belongs urinary tract infection, respiratory tract diseases, pathologies of the cardiovascular system. Data of the stratified analysis show an increase likelihood of repeated unsuccessful ART attempts under the influence of constant chronic stress (odds ratio OR=2.06; 95% CI: 0.95–3.17; p<0.05). Conclusions. Among infertile patients with repeated unsuccessful ART attempts must be separated a high risk group of failures. The identity depends on the duration of infertility, female age and leading combination of factors. Key words: repeated unsuccessful ART attempts, anamnesis, infertility, high risk.


2013 ◽  
Vol 16 (3) ◽  
pp. 593-599 ◽  
Author(s):  
J. Opiela ◽  
M. Samiec

Abstract The efficiency of somatic cell cloning (somatic cell nuclear transfer; SCNT) as well as in vitro fertilization/in vitro embryo production (IVF/IVP) in mammals stay at relatively same level for over a decade. Despite plenty of different approaches none satisfactory break-through took place. In this article, we briefly summarize the implementation of mesenchymal stem cells (MSCs) for experimental embryology. The advantages of using MSCs as nuclear donors in somatic cell cloning and in vitro embryo culture are described. The description of results obtained with these cells in mammalian embryo genomic engineering is presented.


Author(s):  
A.V. Zhigunov ◽  
◽  
Q.T. Nguyen

The increasing need for herbal medicines requires the study of not only biological resources of medical plants, but also methods for their reproduction. Of special value are the medicinal plants that have a long history of success in traditional medicine. One of such plants is Eucommia ulmoides Oliv., which belongs to a rare relict species growing in natural conditions, for the most part, in the undergrowth of humid subtropical forests in China, mainly in the middle course of the Yangtze river. E. ulmoides compares favorably with most subtropical plants owing to its significant frost resistance, which makes it possible to cultivate it outside the humid subtropics. It has been widely introduced in Krasnodar Krai and in the Republic of Adygea (Russia) since the mid-20th century and successfully adapted to various environmental conditions in the Northwest Caucasus. The increasing demand for E. ulmoides bark can only be satisfied by laying out industrial plantations. However, the difficulties encountered in the traditional seed reproduction of E. ulmoides (dioecious species, pollen low quality, parthenocarpy, prolonged seed dormancy, irregular fruiting, long juvenile period, etc.) make scientists turn to modern biotechnological methods of plant propagation. While considering cultivation of planting material, we should focus on highly efficient methods that ensure stable and mass reproduction of the plants under study. An important role is played here by in vitro plant regeneration. The effectiveness of biotechnology methods is due to a reduction in timing of obtaining a large number of vegetative progeny of plants difficult for propagation, as well saving of the area required for their cultivation. The conditions for producing an aseptic culture of E. ulmoides were chosen based on the results of the studies. The highest degree of sterilization of E. ulmoides shoot segments was achieved when the explants were sequentially immersed first in 70 % ethanol (30 s) and then in 0.1 % mercuric chloride solution (5 min). With such a sterilization procedure, 63.3 % of the studied cuttings were made sterile, and 56.7 % of them proved to be viable. The optimal composition of the nutrient medium for regeneration of E. ulmoides microshoots has been determined: MS medium complemented with 1 mg/L 6-Benzylaminopurine (BAP) + 0.2 mg/L 1-Naphthaleneacetic acid (NAA). The best media for explant rooting are the following: 2/3 MS + 1.5 mg/L NAA + 30 g sucrose + 7 g agar; 2/3 MS + 1 mg/L NAA + 0.4 mg/L IBA + 30 g sucrose + 7 g agar.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Maxim Voropaiev ◽  
Deborah Nock

Abstract Background Calcium carbonate antacids are potent over-the-counter antacids, made more effective by adding magnesium carbonate (as in Rennie, Bayer). However, published studies on their onset of action are scarce. Therefore, we carried out an in vitro study comparing Rennie and placebo under simulated conditions of the human stomach (artificial stomach model) to reconfirm the onset of action of Rennie. Methods The validated Simulator of the Human Intestinal Microbial Ecosystem apparatus (SHIME, ProDigest, Belgium) was used, comprising five reactors simulating different parts of the human gastrointestinal tract. Both Rennie and placebo were dosed at two tablets per incubation over six independent, 2-h stomach incubations each. Primary objectives: to evaluate the time required to achieve pH 3.0, 3.5, 4.0 and 4.5, as well as the maximum pH reached. Secondary objective: to evaluate pepsin activity over the entire 2-h gastric incubation. Results After addition of Rennie, the gastric medium reached a pH of 3.0 within 40 s. The maximum pH of 5.24 was maintained for almost 10 min. In contrast, the maximum pH with placebo was 1.28 during the entire gastric simulation. Furthermore, Rennie strongly reduced the activity of mucosa-damaging pepsin during the period of increased pH. With placebo, the lower pH resulted in consistently high loads of digested peptides, reflecting the high cumulative and instantaneous pepsin activity. Conclusions New data is a critical component in informed decision making. Our data confirm the high efficacy and fast onset of acid-neutralizing action of Rennie, which begins to work within seconds.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2452
Author(s):  
Chia-Jung Hsieh ◽  
Ju-Chuan Cheng ◽  
Chia-Jung Hu ◽  
Chi-Yang Yu

Capturing and storing CO2 is of prime importance. The rate of CO2 sequestration is often limited by the hydration of CO2, which can be greatly accelerated by using carbonic anhydrase (CA, EC 4.2.1.1) as a catalyst. In order to improve the stability and reusability of CA, a silica-condensing peptide (R5) was fused with the fastest known CA from Sulfurihydrogenibium azorense (SazCA) to form R5-SazCA; the fusion protein successfully performed in vitro silicification. The entrapment efficiency reached 100% and the silicified form (R5-SazCA-SP) showed a high activity recovery of 91%. The residual activity of R5-SazCA-SP was two-fold higher than that of the free form when stored at 25 °C for 35 days; R5-SazCA-SP still retained 86% of its activity after 10 cycles of reuse. Comparing with an uncatalyzed reaction, the time required for the onset of CaCO3 formation was shortened by 43% and 33% with the addition of R5-SazCA and R5-SazCA-SP, respectively. R5-SazCA-SP shows great potential as a robust and efficient biocatalyst for CO2 sequestration because of its high activity, high stability, and reusability.


Reproduction ◽  
1992 ◽  
Vol 95 (2) ◽  
pp. 431-440 ◽  
Author(s):  
Y. Hatanaka ◽  
T. Nagai ◽  
T. Tobita ◽  
M. Nakano

1974 ◽  
Vol 16 (3) ◽  
pp. 697-700 ◽  
Author(s):  
Iris L. Craig

Nine haploids (2n = 21) of Triticum aestivum L. (cv. Pitic–62) were obtained by in vitro anther culture, utilizing the medium described by Ouyang et al. (1973).


Sign in / Sign up

Export Citation Format

Share Document