scholarly journals Stem Cells from Human Exfoliated Deciduous Teeth Differentiation and Characterization in to Islet like Pancreatic Cell Lineages – An Ex-vivo and In-vitro Study

Author(s):  
Jaiganesh Inbanathan ◽  
Chandrasekaran Krithika ◽  
K. Ponnazhagan ◽  
Srividhya Srinivasan ◽  
P. Manodh ◽  
...  

Background and Objectives: Stem cells from human exfoliated deciduous teeth (SHEDs) have been demonstrated as a novel population of adult stem cells capable of multi-differentiation potential. Methods: Study samples comprise of 30 extracted exfoliating primary teeth collected from children aged 6 to 14 years. After attaining the required cell passage, flowcytometric analysis and trilineage differentiation was done to characterize SHEDs. Further SHEDs were differentiated into Islet like cell aggregates (ICAs) using Serum free media A,B&C. Differentiated ICAs were characterized by RT-PCR, immunocytochemistry, DTZ stain and insulin assay. Results: Flowcytometric analysis of SHEDs showed expression of positive markers CD73, CD90 while no expression of negative markers CD34, CD45 and HLA-DR. Isolated SHEDs had the potential to differentiate into tri-lineages and ICAs. RT-PCR analysis of derived ICAs showed up-regulated expression of GAPDH, insulin, Glut2, PDX1 and PAX6. Immunofluorescence analysis gave expression of Ngn3, Isl-1, C-peptide, Glut2 and PDX1. DTZ stained positive on derived ICAs.Insulin secretion of SHED derived ICAs were measured 26 ± 6 MIU/L at basal glucose level, 128±3 MIU/L and 240 ±9 MIU/L at stimulated glucose level which gave a statistically significant difference in mean value of insulin secreted in different concentration of glucose (p<0.001). The net insulin secretion value of SHED derived ICAs at different glucose concentration was less when compared with Min 6 cells used as positive control. Interpretation and Conclusion: Stem cells from Human Exfoliated Deciduous teeth are mesenchymal stem cells which has the unique potential to differentiate into islet like cell aggregates and serve as a promising source of insulin which under standardized protocols and experimentations can be used for stem cell based therapy for insulin dependent diabetes mellitus.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Manal Nabil Hagar ◽  
Farinawati Yazid ◽  
Nur Atmaliya Luchman ◽  
Shahrul Hisham Zainal Ariffin ◽  
Rohaya Megat Abdul Wahab

Abstract Background Mesenchymal stem cells isolated from the dental pulp of primary and permanent teeth can be differentiated into different cell types including osteoblasts. This study was conducted to compare the morphology and osteogenic potential of stem cells from exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC) in granular hydroxyapatite scaffold (gHA). Preosteoblast cells (MC3T3-E1) were used as a control group. Methodology The expression of stemness markers for DPSC and SHED was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR). Alkaline phosphatase assay was used to compare the osteoblastic differentiation of these cells (2D culture). Then, cells were seeded on the scaffold and incubated for 21 days. Morphology assessment using field emission scanning electron microscopy (FESEM) was done while osteogenic differentiation was detected using ALP assay (3D culture). Results The morphology of cells was mononucleated, fibroblast-like shaped cells with extended cytoplasmic projection. In RT-PCR study, DPSC and SHED expressed GAPDH, CD73, CD105, and CD146 while negatively expressed CD11b, CD34 and CD45. FESEM results showed that by day 21, dental stem cells have a round like morphology which is the morphology of osteoblast as compared to day 7. The osteogenic potential using ALP assay was significantly increased (p < 0.01) in SHED as compared to DPSC and MC3T3-E1 in 2D and 3D cultures. Conclusion gHA scaffold is an optimal scaffold as it induced osteogenesis in vitro. Besides, SHED had the highest osteogenic potential making them a preferred candidate for tissue engineering in comparison with DPSC.


2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Madhura Pawar ◽  
Vivek Pawar ◽  
Apathsakayan Renugalakshmi ◽  
Ashraf Albrakati ◽  
Uthman S. Uthman ◽  
...  

Stem cell therapy is an evolving treatment strategy in regenerative medicine. Recent studies report stem cells from human exfoliated deciduous teeth could complement the traditional mesenchymal stem cell sources. Stem cells from human exfoliated deciduous teeth exhibit mesenchymal characteristics with multilineage differentiation potential. Mesenchymal stem cells are widely investigated for cell therapy and disease modeling. Although many research are being conducted to address the challenges of mesenchymal stem cell therapy in clinics, most of the studies are still in infancy. Host cell microenvironment is one of the major factors affecting the homing of transplanted stem cell and understanding the factors affecting the fate of stem cells of prime important. In this study we aimed to understand the effects of serum deprivation in stem cells derived from human deciduous tooth. Our study aimed to understand the morphological, transcriptional, cell cycle and stemness based changes of stem cells in nutrient deprived medium. Our results suggest that stem cells in nutrient deprived media undergo low proliferation, high apoptosis and changed the differentiation potential of the stem cells. Serum deprived mesenchymal stem cells exhibited enhanced chondrogenic differentiation potential and reduced osteogenic differentiation potential. Moreover, the activation of key metabolic sensor AMP-activated kinase (AMPK) leads to activation of transcription factors such as FOXO3, which leads to an S phase quiescence. Serum deprivation also enhanced the expression of stemness related genes Sox2 and c-Myc.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shao Yue Zhu ◽  
Chang Yong Yuan ◽  
Yi Fan Lin ◽  
Hao Liu ◽  
Yan Qi Yang ◽  
...  

Background. Pericytes play an important role in forming functional blood vessels and establishing stable and effective microcirculation, which is crucial for vascular tissue engineering. The slow ex vivo expansion rate, limited proliferative capacity, and variability of tissue-specific phenotypes would hinder experimental studies and clinical translation of primary pericytes. In this study, the angiogenic and pericyte functions of stem cells from human exfoliated deciduous teeth (SHEDs) and postnatal human dental pulp stem cells (DPSCs) were investigated. Methods. Osteogenic and adipogenic induction assays were performed to evaluate the mesenchymal potential of SHEDs, DPSCs, and pericytes. An in vitro Matrigel angiogenesis assay was conducted to reveal the ability of SHEDs, DPSCs, and pericytes to stabilize vascular-like structures. Quantitative real-time polymerase chain reaction (RT-qPCR) was performed to evaluate mRNA expression. Flow cytometry, western blotting, and immunostaining were used to assess the protein expression. Wound healing and transwell assays were performed to evaluate the migration ability of SHEDs, DPSCs, and pericytes. Results. The osteogenic and adipogenic induction assays showed that SHEDs, DPSCs, and pericytes exhibited similar stem cell characteristics. The mRNA expression levels of PDGFR-β, α-SMA, NG2, and DEMSIN in SHEDs and DPSCs cultured in EC medium were significantly higher than those in the control groups on day 7 ( P < 0.05 ), but significantly higher than those in the pericytes group on day 14 ( P < 0.05 ). Flow cytometry showed that high proportions of SHEDs and DPSCs were positive for various pericyte markers on day 7. The DPSCs, SHEDs, and pericytes displayed strong migration ability; however, there was no significant difference among the groups ( P > 0.05 ). Conclusion. The SHEDs and DPSCs display a profile similar to that of pericytes. Our study lays a solid theoretical foundation for the clinical use of dental pulp stem cells as a potential candidate to replace pericytes.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Alessander Leyendecker Junior ◽  
Carla Cristina Gomes Pinheiro ◽  
Daniela Yukie Sakai Tanikawa ◽  
José Ricardo Muniz Ferreira ◽  
Mariane Tami Amano ◽  
...  

Mesenchymal stem cells (MSCs) have been studied as a promising type of stem cell for use in cell therapies because of their ability to regulate the immune response. Although they are classically isolated from the bone marrow, many studies have sought to isolate MSCs from noninvasive sources. The objective of this study was to evaluate how MSCs isolated from the dental pulp of human exfoliated deciduous teeth (SHED) and fragments of the orbicularis oris muscle (OOMDSCs) behave when treated with an inflammatory IFN-γ stimulus, specifically regarding their proliferative, osteogenic, and immunomodulatory potentials. The results demonstrated that the proliferation of SHED and OOMDSCs was inhibited by the addition of IFN-γ to their culture medium and that treatment with IFN-γ at higher concentrations resulted in a greater inhibition of the proliferation of these cells than treatment with IFN-γ at lower concentrations. SHED and OOMDSCs maintained their osteogenic differentiation potential after stimulation with IFN-γ. Additionally, SHED and OOMDSCs have been shown to have low immunogenicity because they lack expression of HLA-DR and costimulatory molecules such as CD40, CD80, and CD86 before and after IFN-γ treatment. Last, SHED and OOMDSCs expressed the immunoregulatory molecule HLA-G, and the expression of this antigen increased after IFN-γ treatment. In particular, an increase in intracellular HLA-G expression was observed. The results obtained suggest that SHED and OOMDSCs lack immunogenicity and have immunomodulatory properties that are enhanced when they undergo inflammatory stimulation with IFN-γ, which opens new perspectives for the therapeutic use of these cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Vinicius Rosa ◽  
Nileshkumar Dubey ◽  
Intekhab Islam ◽  
Kyung-San Min ◽  
Jacques E. Nör

Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative pluripotent cells that can be retrieved from primary teeth. Although SHED are isolated from the dental pulp, their differentiation potential is not limited to odontoblasts only. In fact, SHED can differentiate into several cell types including neurons, osteoblasts, adipocytes, and endothelial cells. The high plasticity makes SHED an interesting stem cell model for research in several biomedical areas. This review will discuss key findings about the characterization and differentiation of SHED into odontoblasts, neurons, and hormone secreting cells (e.g., hepatocytes and islet-like cell aggregates). The outcomes of the studies presented here support the multipotency of SHED and their potential to be used for tissue engineering-based therapies.


Author(s):  
Minu Anoop ◽  
Indrani Datta

: Most conventional treatments for neurodegenerative diseases fail due to their focus on neuroprotection rather than neurorestoration. Stem cell‐based therapies are becoming a potential treatment option for neurodegenerative diseases as they can home in, engraft, differentiate and produce factors for CNS recovery. Stem cells derived from human dental pulp tissue differ from other sources of mesenchymal stem cells due to their embryonic neural crest origin and neurotrophic property. These include both dental pulp stem cells [DPSCs] from dental pulp tissues of human permanent teeth and stem cells from human exfoliated deciduous teeth [SHED]. SHED offer many advantages over other types of MSCs such as good proliferative potential, minimal invasive procurement, neuronal differentiation and neurotrophic capacity, and negligible ethical concerns. The therapeutic potential of SHED is attributed to the paracrine action of extracellularly released secreted factors, specifically the secretome, of which exosomes is a key component. SHED and its conditioned media can be effective in neurodegeneration through multiple mechanisms, including cell replacement, paracrine effects, angiogenesis, synaptogenesis, immunomodulation, and apoptosis inhibition, and SHED exosomes offer an ideal refined bed-to-bench formulation in neurodegenerative disorders. However, in spite of these advantages, there are still some limitations of SHED exosome therapy, such as the effectiveness of long-term storage of SHED and their exosomes, the development of a robust GMP-grade manufacturing protocol, optimization of the route of administration, and evaluation of the efficacy and safety in humans. In this review, we have addressed the isolation, collection and properties of SHED along with its therapeutic potential on in vitro and in vivo neuronal disorder models as evident from the published literature.


2014 ◽  
Vol 59 (10) ◽  
pp. 1013-1023 ◽  
Author(s):  
Mijeong Jeon ◽  
Je Seon Song ◽  
Byung-Jai Choi ◽  
Hyung-Jun Choi ◽  
Dong-Min Shin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document