scholarly journals A THEORETICAL AND EXPERIMENTAL STUDY OF UNDERTOW

1984 ◽  
Vol 1 (19) ◽  
pp. 151 ◽  
Author(s):  
J. Buhr Hansen ◽  
I.A. Svendsen

It is well known that on a three-dimensional beach large volumes of water carried shorewards by the breakers feed longshore currents, which eventually escape back through the breaker line, often as rip currents. In a steady two-dimensional situation, however, the mass flux represented by (among other things) the surface roller in the breakers returns as a seaward current close to the bottom. This current is called the undertow. In this paper theoretical results for the undertow are compared with the results of recent laboratory experiments.

2019 ◽  
Vol 43 (4) ◽  
pp. 653-660 ◽  
Author(s):  
M.V. Gashnikov

Adaptive multidimensional signal interpolators are developed. These interpolators take into account the presence and direction of boundaries of flat signal regions in each local neighborhood based on the automatic selection of the interpolating function for each signal sample. The selection of the interpolating function is performed by a parameterized rule, which is optimized in a parametric lower dimensional space. The dimension reduction is performed using rank filtering of local differences in the neighborhood of each signal sample. The interpolating functions of adaptive interpolators are written for the multidimensional, three-dimensional and two-dimensional cases. The use of adaptive interpolators in the problem of compression of multidimensional signals is also considered. Results of an experimental study of adaptive interpolators for real multidimensional signals of various types are presented.


2001 ◽  
Author(s):  
P. Mathew

Abstract The Oxley Machining Theory, which has been developed over the last 40 years, is presented in this paper. The capability of the model is described with its initial two-dimensional machining approach followed by the extension to the generalised model for three-dimensional machining. The theoretical results from the model are compared with the experimental results to determine the model capability. A brief description of the work associated with the effect of strain hardening at the interface is presented and comparative results are shown. A further extension of the model to intermittent cutting process of reaming is also presented and a comparison with the experimental results indicates the model developed is quite capable of predicting cutting forces for reaming. In explaining the results obtain, the assumptions made are explained and the inputs required. The limitations of the modelling approach are presented. It is pointed out that the Oxley model is a versatile model as long as proper description of the material flow stress properties is presented.


Author(s):  
Jeffrey S. Oishi ◽  
Geoffrey M. Vasil ◽  
Morgan Baxter ◽  
Andrew Swan ◽  
Keaton J. Burns ◽  
...  

The magnetorotational instability (MRI) occurs when a weak magnetic field destabilizes a rotating, electrically conducting fluid with inwardly increasing angular velocity. The MRI is essential to astrophysical disc theory where the shear is typically Keplerian. Internal shear layers in stars may also be MRI-unstable, and they take a wide range of profiles, including near-critical. We show that the fastest growing modes of an ideal magnetofluid are three-dimensional provided the shear rate, S , is near the two-dimensional onset value, S c . For a Keplerian shear, three-dimensional modes are unstable above S  ≈ 0.10 S c , and dominate the two-dimensional modes until S  ≈ 2.05 S c . These three-dimensional modes dominate for shear profiles relevant to stars and at magnetic Prandtl numbers relevant to liquid-metal laboratory experiments. Significant numbers of rapidly growing three-dimensional modes remainy well past 2.05 S c . These finding are significant in three ways. First, weakly nonlinear theory suggests that the MRI saturates by pushing the shear rate to its critical value. This can happen for systems, such as stars and laboratory experiments, that can rearrange their angular velocity profiles. Second, the non-normal character and large transient growth of MRI modes should be important whenever three-dimensionality exists. Finally, three-dimensional growth suggests direct dynamo action driven from the linear instability.


2019 ◽  
Vol 11 (7) ◽  
pp. 577-583 ◽  
Author(s):  
Aleksey Barkhatov ◽  
Evgenii Vorobev ◽  
Vladimir Veremyev ◽  
Vladimir Kutuzov

This article presents the configuration and technical specification of the passive radar exploiting third-party transmitters of second-generation digital video broadcasting standard DVB-T2 as illuminators of opportunity. The performance of the two-dimensional (2D) passive radar estimated based on theoretical and experimental study is described. The possible configuration of the 2D non-equidistant antenna array for the three-dimensional (3D) passive radar is proposed to ensure the 3D localization of detected targets. The experimental results on drone detection conducted with the 3D passive radar show that the radar with the 2D antenna array is capable to measure not only azimuth but also elevation and consequently target altitude.


Author(s):  
Yujia Liu ◽  
Sifan Peng ◽  
Nan Gui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
...  

Abstract The pebbles flow is a fundamental issue for both academic investigation and engineering application in reactor core design and safety analysis. In general, experimental methods including spiral X-ray tomography and refractive index matched scanning technique (RIMS) are applied to obtain the identification of particles’ positions within a three-dimensional pebble bed. However, none of the above methods can perform global bed particles’ position identification in a dynamically discharging pebble bed, and the corresponding experimental equipment is difficult to access due to the complication and high expense. In this research, the experimental study is conducted to observe the gravity driven discharging process in the quasi two-dimensional silos by making use of the high-speed camera and the uniform backlight. A mathematical morphology-based method is applied to the pre-processing of the captured results. After being increased the gray value gradient by the threshold segmentation, the edges of the particles are identified and smoothed by the Sobel algorithm and the morphological opening operation. The particle centroid coordinates are identified according to the Hough circle transformation of the edges. For the whole pebble bed, the self-programmed process has a particle recognition accuracy of more than 99% and a particle centroid position deviation of less than 3%, which can accurately obtain the physical positions of all particles in the entire dynamically discharge process. By analyzing the position evolution of individual particles in consecutive images, velocity field and motion events of particles are observed. The discharging profiles of 5 conditions with different exit are analyzed in this experiment. The results make a contribution to improving the understanding of the mechanism of pebbles flow in nuclear engineering.


1972 ◽  
Vol 94 (1) ◽  
pp. 97-104 ◽  
Author(s):  
T. J. Landsberg ◽  
E. Krasnoff

The performance of two-dimensional jet-flap cascades is determined experimentally. Stream deflection angles are presented as a function of the ratio of jet to mainstream momentum flux at chord spacing ratios of 0.375 and 0.75. Results obtained with conventional jet-flap airfoils (normal blowing near trailing edge) are in good agreement with published theoretical results. Tangential blowing jet-flap airfoils (tangential blowing over a rounded trailing edge) are shown to approximately double the turning effectiveness of the cascade.


1979 ◽  
Vol 101 (4) ◽  
pp. 500-505 ◽  
Author(s):  
J. H. Strickland ◽  
B. T. Webster ◽  
T. Nguyen

An aerodynamic prediction model has been formulated for two- and three-dimensional Darrieus turbines using a vortex lattice method of analysis. Experiments were conducted on a series of two-dimensional rotor configurations in a water tow tank. The agreement between analysis and experiment was in general found to be good. This model should allow one to make accurate predictions of instantaneous aerodynamic blade forces and to characterize the near wake flow behind the rotor.


2005 ◽  
Vol 128 (1) ◽  
pp. 190-195 ◽  
Author(s):  
Ju Yeop Park ◽  
Myung Kyoon Chung

Since knowledge on hydrodynamic torque of a butterfly valve is very important for butterfly valve design, its hydrodynamic torque is investigated theoretically. For this, a recently developed two-dimensional butterfly valve model is solved through the free-streamline theory with a newly devised iterative scheme and the resulting two-and three-dimensional torque coefficients are compared with previous theoretical results based on the conventional butterfly valve model and experiments. Comparison shows that the improvement due to the new butterfly valve model is marginal. That is, the three-dimensional torque coefficient is well represented by the new model. Otherwise, the two-dimensional torque coefficient is well predicted by the conventional model. In spite this fact, the present results can be used in further researches on butterfly valves because the improved butterfly valve model is mathematically correct and reflects physical reality more correctly than the conventional valve model.


2013 ◽  
Vol 717 ◽  
pp. 347-360 ◽  
Author(s):  
S. M. Tobias ◽  
F. Cattaneo

AbstractWe argue that a method developed by Ångström (Ann. Phys. Chem., vol. 114, 1861, pp. 513–530) to measure the thermal conductivity of solids can be adapted to determine the effective diffusivity of a large-scale magnetic field in a turbulent electrically conducting fluid. The method consists of applying an oscillatory source and measuring the steady-state response. We illustrate this method in a two-dimensional system. This geometry is chosen because it is possible to compare the results with independent methods that are restricted to two-dimensional flows. We describe two variants of this method: one (the ‘turbulent Ångström method’) that is better suited to laboratory experiments and a second (the ‘method of oscillatory sines’) that is effective for numerical experiments. We show that, if correctly implemented, all methods agree. Based on these results we argue that these methods can be extended to three-dimensional numerical simulations and laboratory experiments.


Sign in / Sign up

Export Citation Format

Share Document