scholarly journals SIMULATION OF SORTING SEDIMENTATION IN THE CHANNEL OF HUANGHUA HARBOR BY USING 3D MULTI-SIZED SEDIMENT TRANSPORT MODEL OF EFDC

2011 ◽  
Vol 1 (32) ◽  
pp. 22
Author(s):  
Qinghe Zhang ◽  
Feng Tan ◽  
Tao Han ◽  
Xiaoyuan Wang ◽  
Zhiqiang Hou ◽  
...  

Huanghua Harbor, located in the south-west coast of Bohai Bay, China, has frequently encountered severe channel siltation with sorting sedimentation along the channel during storm events since its construction. For prediction of channel siltation, a 3D numerical model of multi-fraction sediment transport based on the coupling of modified EFDC model and SWAN model is developed to investigate the sediment transport. It is shown from simulated results that the sorted sedimentation in the channel was well simulated in storm events, and the high sediment concentration near sea bed for silty coast during storm process can also be basically reflected by the model.

2001 ◽  
Vol 28 (3) ◽  
pp. 536-540 ◽  
Author(s):  
Qing-Chao Guo ◽  
Yee-Chung Jin

Various coefficients in sediment transport models must be accounted for. Models based on depth-averaged equations and sediment carrying capacity formula contain some coefficients: α, k, and m. At the present, no widely acceptable method has been developed for determining the values of these coefficients. The focus of this paper is in the development of semi-theoretical formulas for estimating these coefficients such that, in practical applications, the uncertainty involved in selecting coefficients is minimized. Model verification shows that the coefficients obtained from the proposed formulas give a good simulation of the channel bed deformation. In addition, Rouse's equation for sediment concentration distribution will become solvable because the reference concentration can be determined from the derived expression for α. The simulated concentration profiles obtained by solving the Rouse's equation and α formula agree reasonably well with the measured data.Key words: depth-averaged model, sediment transport, sediment-carrying capacity.


1984 ◽  
Vol 1 (19) ◽  
pp. 131 ◽  
Author(s):  
Angus D. Gordon ◽  
John G. Hoffman

Engineering projects on the continental shelf off Sydney, Australia, have stimulated investigation into the sediment transport system of the shelf. Investigation activities associated with these projects have included: definition of sea bed morphology, sediment distribution and bedform characteristics; monitoring of steady and wave induced currents; wind data collection; suspended sediment sampling; bottom camera sediment movement investigations and analytical studies of sediment reaction to sea bed forcing functions. Sea bed velocity exceedence relationships for both wave oscillations and steady currents have been determined at depths of 24 m, 60 m and 80 m. Thresholds of sediment movement have been defined. Relative sediment transport computations have been undertaken and studies of suspended sediment concentration profiles are in progress so that absolute transport rates can be determined. The prevailing conditions, which include a mainly south bound current, are seldom sufficient to induce entrainment of shelf sediments. Transport events mainly result from major storms in the Tasman Sea which produce both high energy waves and north bound currents. Although these events are rare and short lived, the combined wave and current shear produced at the sea bed during the events gives rise to entrainment conditions which result in their dominance of the shelf sediment transport system.


2020 ◽  
Author(s):  
Kai-Yi Bai ◽  
Jiing-Yun You

<p>This study developed a multi-layer hydrodynamic and sediment transport model for simulating tides and the estuarine flows. The flow circulation in an estuary shows complicated mixing and stratification patterns due to the combined effects from currents and tides. This kind of issues becomes more important in Taiwan in line with the more and more frequent sediment flushing operation which led to high sediment concentration flow at the estuary. In some applications,  three-dimensional (3D) models solving full Navier-Stokes equations were used. However, the extremely high computational cost, especially for the large-scale environmental problems, is always a serious concern. In the past years, continuous efforts have been devoted to the development of efficient quasi-three-dimensional models under hydrostatic and Boussinesq assumptions. Following the same state-of-the-art modelling strategy, this study develops a multi-layer shallow-water and sediment transport model with finite volume method. In this model, a terrain following coordinate with high local resolution is used to vertically divide the computational domain into multiple layers to better addressing bottom topography and velocity profile. Our model is rigorously validated against several benchmark cases including winddriven circulation, subcritical flow over a hump, tidal wave propagation, and sediment transport. The grid convergence test and accuracy both are in good agreement with analytical solutions. Subsequently, the model is applied to investigate the estuary dynamics and sediment transport under different conditions, e.g., flow discharges, bottom slopes, wind shears and tidal variations. Overall, the results show a relationship between flow conditions and sediment transport. Later, some scenarios for various upstream inflow and sediment concentration will be examined to assess the reservoir operation rules. </p><p><strong>Keywords: shallow water, sediment transport, multi-layer, hydrostatic, Boussinesq Assumption, a finite volume characteristics (FVC) method </strong><br> </p><p><br> <br> <br><br> </p>


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 192 ◽  
Author(s):  
Yuting Li ◽  
Zhiyao Song ◽  
Guoqiang Peng ◽  
Xuwen Fang ◽  
Ruijie Li ◽  
...  

This study presents an incorporation and application of a two-dimensional, unstructured-grid hydrodynamic model with a suspended sediment transport module in Daishan, China. The model is verified with field measurement data from 2017: water level, flow velocities and suspended sediment concentration (SSC). In the application on the Daishan, the performance of the hydrodynamic model has been satisfactorily validated against observed variations of available measurement stations. Coupled with the hydrodynamic model, a sediment transport model has been developed and tested. The simulations agreed quantitatively with the observations. The validated model was applied to the construction of breakwaters and docks under a different plan. The model can calculate the flow field and siltation situation under different breakwater settings. After we have analyzed the impact of existing breakwater layout schemes and sediment transport, a reasonable plan will be selected. The results show that the sea area near the north of Yanwo Shan and Dongken Shan has a large flow velocity exceeding 2.0 m/s and the flow velocity within the isobath of 5 m is small, within 0.6 m/s. According to the sediment calculation, the dock project is feasible. However, the designed width of the fairway should be increased to ensure the navigation safety of the ship according to variation characteristics of cross flow velocity in channel.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1840
Author(s):  
Dongxiao Yin ◽  
Z. George Xue ◽  
David J. Gochis ◽  
Wei Yu ◽  
Mirce Morales ◽  
...  

A soil erosion and sediment transport model (WRF-Hydro-Sed) is introduced to WRF-Hydro. As a process-based, fully distributed soil erosion model, WRF-Hydro-Sed accounts for both overland and channel processes. Model performance is evaluated using observed rain gauge, streamflow, and sediment concentration data during rainfall events in the Goodwin Creek Experimental Watershed in Mississippi, USA. Both streamflow and sediment yield can be calibrated and validated successfully at a watershed scale during rainfall events. Further discussion reveals the model’s uncertainty and the applicability of calibrated hydro- and sediment parameters to different events. While an intensive calibration over multiple events can improve the model’s performance to a certain degree compared with single event-based calibration, it might not be an optimal strategy to carry out considering the tremendous computational resources needed.


1976 ◽  
Vol 1 (15) ◽  
pp. 69 ◽  
Author(s):  
C.A. Fleming ◽  
J.N. Hunt

A mathematical model for sediment transport under waves has been developed from concepts that have been used successfully for unidirectional flow. This model has been combined interactively with numerical models of wave refraction, wave diffraction, longshore currents and circulation currents in order to predict local topographical changes in the vicinity of a cooling water intake basin for a nuclear power station. The sediment model is calibrated using field data of sediment concentration profiles. Verification and adjustments may be made by analysing deep water wave statistics corresponding to periodic beach and hydrographic surveys. The model can be used to investigate the effects of any wave climate and consequently different layouts of coastal structures can be examined very rapidly. For the particular problem considered it was necessary to optimise the configuration of the breakwaters forming a cooling water intake basin in order to minimise the sediment concentration at the intake, estimate maintenance dredging quantities and investigate extreme events.


Author(s):  
Hong-Ming Liu ◽  
Wen-cheng Liu ◽  
Chih-Yu Chiu

A three-dimensional, unstructured grid, hydrodynamic and suspended-sediment transport model (i.e., SELFE-SED) was developed to simulate temporal and spatial variations of suspended sediment and was applied to the subtropical subalpine Tsuei-Feng Lake (TFL) of Taiwan. The model was validated with measured water level and suspended‑sediment concentration in 2009, 2010, and 2011. The overall model simulation results are in quantitative agreement with the observational data. The validated model was then applied to explore the most important parameter that affects the suspended-sediment concentration and to investigate the effect of wind stress on the mean current and suspended‑sediment distribution in this shallow lake. Modeling results of sensitivity analysis reveal that the settling velocity is a crucial parameter and erosion rate is less important in the suspended-sediment transport model. Remarkable lake circulation was found based on the strength of wind speed and wind direction. Strong wind would result in higher mean current in the top layer and suspended-sediment distribution in the top and bottom layers. This study demonstrated that the wind stress played a significant influence on mean circulation and suspended-sediment transport in a shallow lake.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Wei Zhang ◽  
Qiong Jia ◽  
Xiaowen Chen

Flow and suspended sediment transport in distributary channel networks play an important role in the evolution of deltas and estuaries, as well as the coastal environment. In this study, a 1D flow and suspended sediment transport model is presented to simulate the hydrodynamics and suspended sediment transport in the distributary channel networks. The governing equations for river flow are the Saint-Venant equations and for suspended sediment transport are the nonequilibrium transport equations. The procedure of solving the governing equations is firstly to get the matrix form of the water level and suspended sediment concentration at all connected junctions by utilizing the transformation of the governing equations of the single channel. Secondly, the water level and suspended sediment concentration at all junctions can be obtained by solving these irregular spare matrix equations. Finally, the water level, discharge, and suspended sediment concentration at each river section can be calculated. The presented 1D flow and suspended sediment transport model has been applied to the Pearl River networks and can reproduce water levels, discharges, and suspended sediment concentration with good accuracy, indicating this that model can be used to simulate the hydrodynamics and suspended sediment concentration in the distributary channel networks.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1721 ◽  
Author(s):  
Arniza Fitri ◽  
Roslan Hashim ◽  
Soroush Abolfathi ◽  
Khairul Nizam Abdul Maulud

Understanding the dynamics of sediment transport and erosion-deposition patterns in the locality of a coastal structure is vital to evaluating the performance of coastal structures and predicting the changes in coastal dynamics caused by a specific structure. The nearshore hydro-morphodynamic responses to coastal structures vary widely, as these responses are complex functions with numerous parameters, including structural design, sediment and wave dynamics, angle of approach, slope of the coast and the materials making up the beach and structures. This study investigated the sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater protecting the cohesive shore of Carey Island, Malaysia. The data used for this study were collected from field measurements and secondary sources from 2014 to 2015. Sea-bed elevations were monitored every two months starting from December 2014 to October 2015, in order to quantify the sea-bed changes and investigate the erosion-deposition patterns of the cohesive sediment due to the existence of the breakwater. In addition, numerical modelling was also performed to understand the impacts of the breakwater on the nearshore hydrodynamics and investigate the dynamics of fine sediment transport around the breakwater structure. A coupled two-dimensional hydrodynamics-sediment transport model based on Reynolds averaged Navier-Stokes (RANS) equations and cell-centered finite volume method with flexible meshing approach was adopted for this study. Analysis of the results showed that the detached breakwater reduced both current speed and wave height behind the structure by an average of 0.12 m/s and 0.1 m, respectively. Also, the breakwater made it possible for trapped suspended sediment to settle in a sheltered area by approximately 8 cm in height near to the first main segment of the breakwater, from 1 year after its construction. The numerical results were in line with the field measurements, where sediment accumulations were concentrated in the landward area behind the breakwater. In particular, sediment accumulations were concentrated along the main segments of the breakwater structure during the Northeast (NE) season, while concentration near the first main segment of the breakwater were recorded during the Southwest (SW) season. The assessment illustrated that the depositional patterns were influenced strongly by the variations in seasonal hydrodynamic conditions, sediment type, sediment supply and the structural design. Detached breakwaters are rarely considered for cohesive shores; hence, this study provides new, significant benefits for engineers, scientists and coastal management authorities with regard to seasonal dynamic changes affected by a detached breakwater and its performance on a cohesive coast.


Sign in / Sign up

Export Citation Format

Share Document