scholarly journals THE IMPACT OF BARRIER ISLAND DEGRADATION ON HURRICANE-INDUCED SEDIMENT TRANSPORT

Author(s):  
Ke Liu ◽  
Qin Chen ◽  
Kelin Hu

Hurricanes are recognized as a strong forcing in changing coastal morphology by redistributing sediments. Barrier islands protect estuaries from storm surge and severe waves and confine water and sediment discharge into estuaries during a hurricane event. In this study, we developed a three-dimensional, fully coupled storm surge, waves, and sediment transport model. The impacts of barrier islands degradation on hurricane hydrodynamics and sediment dynamics were evaluated by comparing a hypothetical model configuration for four major barrier islands in Terrebonne Bay and Barataria Bay against a baseline configuration. With the hypothetical deterioration of barrier islands, model results showed that the sediment transport from the shelf to the estuary increased in Terrebonne Bay but decreased in Barataria Bay. In the simulations, most of the deposition on coastal wetland still originated from the bay even when the barrier islands were degraded.

2016 ◽  
Vol 16 (24) ◽  
pp. 15741-15754 ◽  
Author(s):  
Martyn P. Chipperfield ◽  
Qing Liang ◽  
Matthew Rigby ◽  
Ryan Hossaini ◽  
Stephen A. Montzka ◽  
...  

Abstract. Carbon tetrachloride (CCl4) is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. However, the current observed rate of this decrease is known to be slower than expected based on reported CCl4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D) chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74 % of total), but a reported 10 % uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl4 decay. This is partly due to the limiting effect of the rate of transport of CCl4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9 % of total) is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17 % of total) has the largest impact on modelled CCl4 decay due to its sizeable contribution to CCl4 loss and large lifetime uncertainty range (147 to 241 years). With an assumed CCl4 emission rate of 39 Gg year−1, the reference simulation with the best estimate of loss processes still underestimates the observed CCl4 (overestimates the decay) over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year−1. Further progress in constraining the CCl4 budget is partly limited by systematic biases between observational datasets. For example, surface observations from the National Oceanic and Atmospheric Administration (NOAA) network are larger than from the Advanced Global Atmospheric Gases Experiment (AGAGE) network but have shown a steeper decreasing trend over the past 2 decades. These differences imply a difference in emissions which is significant relative to uncertainties in the magnitudes of the CCl4 sinks.


2014 ◽  
Vol 11 (3) ◽  
pp. 1391-1433 ◽  
Author(s):  
A. Guarnieri ◽  
A. J. Souza ◽  
N. Pinardi ◽  
P. Traykovski

Abstract. A new sediment transport model, considering currents, tides and waves is presented for the Adriatic Sea basin. The simulations concentrate on the winter of 2002–2003 because of field data availability and interesting intermittent processes occurrence. A process oriented analysis is performed to investigate the impact that Sirocco and Bora wind regimes have on sediment transport. The comparisons of the simulations with the observed data show that the model is capable to capture the main dynamics of sediment transport along the Italian coasts and the sediment concentration within the water column. This latter can reach values up to several g L−1, especially within the first centimetres above the bottom. The sediments are transported mainly southwards along the Italian coasts, consistently with the known literature results, except during Sirocco wind events, which can be responsible for reversing the coastal circulation in the northern area of the basin, and consequently the sediment transport. The resuspension of sediments is also related to the specific wave regimes induced by Bora and Sirocco, the former inducing resuspension events near the coasts while the latter causing a more diffused resuspension regime in the Northern Adriatic basin. Beside the realistic representation of short timescales resuspension/deposition events due to storms, the model was also used to investigate persistent erosion or deposition areas in the Adriatic Sea. Two main depocenters were identified: one, very pronounced, in the surroundings of the Po river delta, and another one a few kilometres off the coast in front of the Ancona promontory. A third region of accumulation, even if less intense, was found to be offshore the southernmost limit of the Gargano region. On the contrary the whole western coast within a distance of a few kilometres from the shore was found to be subject to prevailing erosion. The comparison with observed accumulation and erosion data shows that the model captures well the main depocenters in the domain and the erosion within the very coastal belt of the western side of the basin, but seems to be too erosive in a few areas, in particular those where the contribution of sediment inflow to the sea of some minor but intermittently important rivers is not considered in a realistic way as input to the model.


Author(s):  
Igal Berenshtein ◽  
Shay O’Farrell ◽  
Natalie Perlin ◽  
James N Sanchirico ◽  
Steven A Murawski ◽  
...  

Abstract Major oil spills immensely impact the environment and society. Coastal fishery-dependent communities are especially at risk as their fishing grounds are susceptible to closure because of seafood contamination threat. During the Deepwater Horizon (DWH) disaster for example, vast areas of the Gulf of Mexico (GoM) were closed for fishing, resulting in coastal states losing up to a half of their fishery revenues. To predict the effect of future oil spills on fishery-dependent communities in the GoM, we develop a novel framework that combines a state-of-the-art three-dimensional oil-transport model with high-resolution spatial and temporal data for two fishing fleets—bottom longline and bandit-reel—along with data on the social vulnerability of coastal communities. We demonstrate our approach by simulating spills in the eastern and western GoM, calibrated to characteristics of the DWH spill. We find that the impacts of the eastern and western spills are strongest in the Florida and Texas Gulf coast counties respectively both for the bandit-reel and the bottom longline fleets. We conclude that this multimodal spatially explicit quantitative framework is a valuable management tool for predicting the consequences of oil spills at locations throughout the Gulf, facilitating preparedness and efficient resource allocation for future oil-spill events.


2017 ◽  
Author(s):  
Daniel R. Moon ◽  
Giorgio S. Taverna ◽  
Clara Anduix-Canto ◽  
Trevor Ingham ◽  
Martyn P. Chipperfield ◽  
...  

Abstract. One geoengineering mitigation strategy for global temperature rises resulting from the increased concentrations of greenhouse gases is to inject particles into the stratosphere to scatter solar radiation back to space, with TiO2 particles emerging as a possible candidate. Uptake coefficients of HO2, γ(HO2), onto sub-micrometre TiO2 particles were measured at room temperature and different relative humidities (RH) using an atmospheric pressure aerosol flow tube coupled to a sensitive HO2 detector. Values of γ(HO2) increased from 0.021 ± 0.001 to 0.036 ± 0.007 as the RH was increased from 11 % to 66 %, and the increase in γ(HO2) correlated with the number of monolayers of water surrounding the TiO2 particles. The impact of the uptake of HO2 onto TiO2 particles on stratospheric concentrations of HO2 and O3 was simulated using the TOMCAT three-dimensional chemical transport model. The model showed that by injecting the amount of TiO2 required to achieve the same cooling effect as the Mt. Pinatubo eruption, heterogeneous reactions between HO2 and TiO2 would have a negligible effect on stratospheric concentrations of HO2 and O3.


2017 ◽  
Vol 34 (7) ◽  
pp. 1469-1482 ◽  
Author(s):  
Daosheng Wang ◽  
Jicai Zhang ◽  
Ya Ping Wang ◽  
Xianqing Lv ◽  
Yang Yang ◽  
...  

AbstractThe model parameters in the suspended cohesive sediment transport model are quite important for the accurate simulation of suspended sediment concentrations (SSCs). Based on a three-dimensional cohesive sediment transport model and its adjoint model, the in situ observed SSCs at four stations are assimilated to simulate the SSCs and to estimate the parameters in Hangzhou Bay in China. Numerical experimental results show that the adjoint method can efficiently improve the simulation results, which can benefit the prediction of SSCs. The time series of the modeled SSCs present a clear semidiurnal variation, in which the maximal SSCs occur during the flood tide and near the high water level due to the large current speeds. Sensitivity experiments prove that the estimated results of the settling velocity and resuspension rate, especially the temporal variations, are robust to the model settings. The temporal variations of the estimated settling velocity are negatively correlated with the tidal elevation. The main reason is that the mean size of the suspended sediments can be reduced during the flood tide, which consequently decreases the settling velocity according to Stokes’s law, and it is opposite in the ebb tide. The temporal variations of the estimated resuspension rate and the current speeds have a significantly positive correlation, which accords with the dynamics of the resuspension rate. The temporal variations of the settling velocity and resuspension rate are reasonable from the viewpoint of physics, indicating the adjoint method can be an effective tool for estimating the parameters in the sediment transport models.


2012 ◽  
Vol 12 (1) ◽  
pp. 371-380 ◽  
Author(s):  
R. Hossaini ◽  
M. P. Chipperfield ◽  
W. Feng ◽  
T. J. Breider ◽  
E. Atlas ◽  
...  

Abstract. We have used a global three-dimensional chemical transport model to quantify the impact of the very short-lived substances (VSLS) CHBr3, CH2Br2, CHBr2Cl, CHBrCl2, CH2BrCl and C2H5-Br on the bromine budget of the stratosphere. Atmospheric observations of these gases allow constraints on surface mixing ratios that, when incorporated into our model, contribute ~4.9–5.2 parts per trillion (ppt) of inorganic bromine (Bry) to the stratosphere. Of this total, ~76 % comes from naturally-emitted CHBr3 and CH2Br2. The remaining species individually contribute modest amounts. However, their accumulated total accounts for up to ~1.2 ppt of the supply and thus should not be ignored. We have compared modelled tropical profiles of a range of VSLS with observations from the recent 2009 NSF HIPPO-1 aircraft campaign. Modelled profiles agree reasonably well with observations from the surface to the lower tropical tropopause layer. We have also considered the poorly studied anthropogenic VSLS, C2H5Br, CH2BrCH2Br, n-C3H7Br and i-C3H7Br. We find the local atmospheric lifetime of these species in the tropical tropopause layer are ~183, 603, 39 and 49 days, respectively. These species, particularly C2H5Br and CH2BrCH2Br, would thus be important carriers of bromine to the stratosphere if emissions were to increase substantially. Our model shows ~70–73 % and ~80–85 % of bromine from these species in the tropical boundary layer can reach the lower stratosphere.


2005 ◽  
Vol 5 (6) ◽  
pp. 12373-12401
Author(s):  
G. Berthet ◽  
N. Huret ◽  
F. Lefèvre ◽  
G. Moreau ◽  
C. Robert ◽  
...  

Abstract. In this paper we study the impact of the modelling of N2O on the simulation of NO2 and HNO3 by comparing in situ vertical profiles measured at mid-latitudes with the results of the Reprobus 3-D CTM (Three-dimensional Chemical Transport Model) computed with the kinetic parameters from the JPL recommendation in 2002. The analysis of the measured in situ profile of N2O shows particular features indicating different air mass origins. The measured N2O, NO2 and HNO3 profiles are not satisfyingly reproduced by the CTM when computed using the current 6-hourly ECMWF operational analysis. Improving the simulation of N2O transport allows us to calculate quantities of NO2 and HNO3 in reasonable agreement with observations. This is achieved using 3-hourly winds obtained from ECMWF forecasts. The best agreement is obtained by constraining a one-dimensional version of the model with the observed N2O. This study shows that modelling the NOy partitioning with better accuracy relies at least on a correct simulation of N2O and thus of total NOy.


2019 ◽  
Author(s):  
Amin Ilia

Estimation of flows and sediment transport is challenging as many complexes and interacting physical phenomena need to be accounted for. In this research, a coupled two-dimensional finite volume flow model and a three-dimensional sediment transport model were developed in Fortran. In this model, the depth-integrated current vectors and water level were computed by 2D shallow water equations as the 2D model is computationally much faster than the 3D model. The depth-integrated current vectors were distributed in depths using a logarithmic current distribution equation, log of the wall. These distributed velocities and simulated water levels were used for three-dimensional sediment transport model which is generated using the same scheme. A 3D sediment transport model was preferred over a 2D model as 3D sediment model can estimate vertically diffusion of sediment mass from bedload to suspended sediment load which significantly improves the prediction of morphology evolutions.In order to discretize each subset of equations with the best-suited method, I utilized a time-splitting technique. As a result, I applied the second-order Fromm scheme which was found the best method for solving advection terms and semi-implicit forward time central space method which was found the best method for solving diffusion terms. The time-splitting scheme also reduced the complicity, therefore, the solution became simple and attractive to apply. For developing the sediment transport model, I applied this advection-diffusion concept to estimate the distribution of suspended sediment concentration and the Van Rijn (1981) scheme for the estimation of bedload sediment transport. As it’s very important to estimate and predict this phenomenon accurately, I compared the model with a lab trench experiment and the model results were in agreement with lab experiments. It was shown that the model could accurately simulate sedimentation on the downsloping (deceleration) section and erosion on the upsloping (acceleration) section of a marine trench. This would cause lateral movement of the channel toward the current direction. Being capable of accurate sediment transport and morphological dynamics simulation in this complex setting, this model is validated to be applied to other marine problems.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2072
Author(s):  
Courtney Elliton ◽  
Kehui Xu ◽  
Victor H. Rivera-Monroy

Sediment transport in coastal regions is regulated by the interaction of river discharge, wind, waves, and tides, yet the role of vegetation in this interaction is not well understood. Here, we evaluated these variables using multiple acoustic and optical sensors deployed for 30–60 days in spring and summer/fall 2015 at upstream and downstream stations in Mike Island, a deltaic island within the Wax Lake Delta, LA, USA. During a flooding stage, semidiurnal and diurnal tidal impact was minimal on an adjacent river channel, but significant in Mike Island where vegetation biomass was low and wave influence was greater downstream. During summer/fall, a “vegetated channel” constricted the water flow, decreasing current speeds from ~13 cm/s upstream to nearly zero downstream. Synchrony between the upstream and downstream water levels in spring (R2 = 0.91) decreased in summer/fall (R2 = 0.84) due to dense vegetation, which also reduced the wave heights from 3–20 cm (spring) to nearly 0 cm (summer/fall). Spatial and temporal differences in total inorganic nitrogen and orthophosphate concentrations in the overlying and sediment porewater were evident as result of vegetation growth and expansion during summer/fall. This study provides key hourly/daily data and information needed to improve the parameterization of biophysical models in coastal wetland restoration projects.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 18 ◽  
Author(s):  
Yong Lai ◽  
Kuowei Wu

Three-dimensional (3D) hydrostatic-pressure-assumption numerical models are widely used for environmental flows with free surfaces and phase interfaces. In this study, a new flow and sediment transport model is developed, aiming to be general and more flexible than existing models. A general set of governing equations are used for the flow and suspended sediment transport, an improved solution algorithm is proposed, and a new mesh type is developed based on the unstructured polygonal mesh in the horizontal plane and a terrain-following sigma mesh in the vertical direction. The new flow model is verified first with the experimental cases, to ensure the validity of flow and free surface predictions. The model is then validated with cases having the suspended sediment transport. In particular, turbidity current flows are simulated to examine how the model predicts the interface between the fluid and sediments. The predicted results agree well with the available experimental data for all test cases. The model is generally applicable to all open-channel flows, such as rivers and reservoirs, with both flow and suspended sediment transport issues.


Sign in / Sign up

Export Citation Format

Share Document