scholarly journals NEW SUSPENDED SAND CONCENTRATION MODEL FOR BREAKING WAVES

Author(s):  
Gabriel Lim ◽  
Ravindra Jayaratne ◽  
Tomoya Shibayama

Process-based morphodynamic modelling suites (as well as other process-based models) are often considered to be inefficient and unsuitable for simulating medium- to long-term morphodynamics due to the various theoretical (e.g. robustness of sediment transport models) and practical (e.g. computational costs) limitations. In particular, a lack of knowledge of sediment transport processes and how they relate to hydrodynamics makes the application of short-term models to long-term coastal evolution challenging. Even the state-of-the-art coastal area modelling suites (such as Delft3D and MIKE21) consist of relatively simple physics, relying instead on numerous semi-empirical parameterizations, which are often poorly supported by measured data and/or physical process understanding. In particular, suspended sediment transport in the highly turbulent surf zone is poorly modelled under breaking wave conditions. Six existing suspended sand concentration (SSC) models were critically evaluated against four high-resolution datasets with field-scale breaking waves and co-located velocity and concentration measurements over multiple cross-shore zones (shoaling, breaking and inner-surf zones). A new improved concentration model was proposed based on a novel empirical relationship observed between local water depth and reference concentration, as well as latest process understanding and insights.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/2iBrnXs4b3M

1992 ◽  
Vol 26 (5-6) ◽  
pp. 1421-1430 ◽  
Author(s):  
T. Kusuda ◽  
T. Futawatari

Based on the results of field observation in a tidal river, modeling of sediment transport processes is performed and the suspended sediment transport over a long term is simulated with a newly developed procedure, in which the Lagrangian reference frame is used in order to reduce numerical dispersion. The suspended sediment transport in the tidal river is calculated with erosion and deposition of sediments, consolidation of fluid mud to bed mud, and transport by turbidity current. Sediment transport processes concerned with formation and maintenance of turbidity maxima are sufficiently simulated for a fortnightly cycle with the Lagrangian sediment transport model (LSTM).


1978 ◽  
Vol 1 (16) ◽  
pp. 93 ◽  
Author(s):  
Matthew N. Gree ◽  
Ole Secher Madsen

Siltation rates anticipated at harbor entrances, in navigation channels and at inlet structures as well as possible adverse effects caused by these and other coastal engineering constructions are often assessed based on considerations of longshore sediment transport rates. The ability to predict the longshore sediment transport rate is consequently of considerable importance in many coastal engineering problems. The engineering need for an ability to predict longshore sediment transport rates is evidenced by the fact that the development of empirical relationships preceeded, by decades, any attempts at rigorous analyses of the mechanics of sediment transport processes in the surf zone. A predictive relationship for longshore sediment transport rates, which enjoys considerable popularity in the United States, is the empirical relationship suggested by the U.S. Army (1973), Coastal Engineering Research Center (CERC) in their Shore Protection Manual (SPM-73).


Author(s):  
Yan Ding ◽  
Sung-Chan Kim ◽  
Richard B. Styles ◽  
Rusty L. Permenter

Driven by wave and current, sediment transport alongshore and cross-shore induces shoreline changes in coasts. Estimated by breaking wave energy flux, longshore sediment transport in littoral zone has been studied for decades. Cross-shore sediment transport can be significant in a gentle-slope beach and a barred coast due to bar migration. Short-term beach profile evolution (typically for a few days or weeks) has been successfully simulated by reconstructing nonlinear wave shape in nearshore zone (e.g. Hsu et al 2006, Fernandez-Mora et al. 2015). However, it is still lack of knowledge on the relationship between cross-shore sediment transport and long-term shoreline evolution. Based on the methodology of beach profile evolution modeling, a semi-empirical closure model is developed for estimating phase-average net cross-shore sediment transport rate induced by waves, currents, and gravity. This model has been implemented into GenCade, the USACE shoreline evolution model.


1974 ◽  
Vol 1 (14) ◽  
pp. 45 ◽  
Author(s):  
Ole Secher Madsen

The possible effect on the stability of a porous sand bed of the flow induced within the bed during the passage of near-breaking or breaking waves is considered. It is found that the horizontal flow rather than the vertical flow within the bed may affect its stability. An approximate analysis, used in geotechnical computations of slope stability, indicates that a momentary bed failure is likely to occur during the passage of the steep front slope of a near-breaking wave. Experimental results for the pressure gradient along the bottom under near-breaking waves are presented. These results indicate that the pressure gradient is indeed of sufficient magnitude to cause the momentary failure suggested by the theoretical analysis. The loss of stability of the bed material due to the flow induced within the bed itself may affect the amount of material set in motion during the passage of a near-breaking or breaking wave, in particular, in model tests employing light weight bed material. The failure mechanism considered here is also used as the basis for a hypothesis for the depth of disturbance of the bed in the surf zone. The flow induced in a porous bed is concluded to be an important mechanism which should be considered when dealing with the wave-sediment interaction in the surf zone.


2020 ◽  
Author(s):  
Kilian Mouris ◽  
Leon Saam ◽  
Felix Beckers ◽  
Silke Wieprecht ◽  
Stefan Haun

<p>Reservoir sedimentation reduces not only the available storage volume of reservoirs, but may also create other serious problems, such as an increase of bed levels or accumulations of nutrients and contaminants, which affect the environment. An increase in bed levels at the head of the reservoir can reduce flood safety and increase the risk for the surrounding areas. Deposited sediments close to the dam may block hydraulic structures, such as the bottom outlets, or, in case they enter the intake, lead to possible abrasion of plant components (e.g. wear of turbines and pipes).</p><p>Prior to reservoir construction, a pre-evaluation of the sediment yield from the catchment is usually performed by using soil erosion and sediment delivery models. However, the trapping efficiency is often only obtained by empirical approaches, such as Brune’s or Churchill’s curve, which are based on the capacity of the reservoir and the mean annual inflow. This is still common practice, although 3D hydro-morphodynamic models became powerful tools to numerically study sediment transport and reservoir sedimentation prior to the construction of reservoirs as well as during its operation.</p><p>Within this study, a fully 3D hydro-morphodynamic numerical model, based on the Reynolds-averaged Navier-Stokes equations, is applied to a case study to simulate, on the one hand suspended sediment transport within a hydropower reservoir and on the other hand a reservoir flushing operation as potential management scenario, with the goal to remobilize already deposited sediments and to release these sediments from the reservoir. The modeled reservoir has a total storage capacity of around 14 million m³, whereby the water level can fluctuate due to pumped-storage operation by 40.5 m (difference between the maximum operation level and the operational outlet). At the head is the natural inflow of two creeks into the reservoir and a lateral transition tunnel is located on the orographic right side, which collects several headwater streams from adjacent catchments.</p><p>Simulations are performed for different operation modes of the reservoir. The results clearly show that through active reservoir management (variation of water levels as well as using the momentum of the discharge from the transition tunnel) the sediment motion in the reservoir can be affected to a certain extent. It is for instance possible to almost completely avoid reservoir sedimentation in front of the dam and the hydraulic structures (water intake and bottom outlets) during sediment-laden flows when simultaneously high discharges are provided from the laterally located transition tunnel. The conducted simulation results of reservoir flushing also show that the success of the flushing operation is strongly dependent on the water level. As expected, flushing with full drawdown of the water level is the most efficient method to release sediments.</p><p>Through the detailed results of the 3D hydro-morphodynamic model, it is feasible to receive a deeper knowledge of the ongoing sediment transport processes within the studied reservoir. The gained knowledge can further be used to derive sustainable and efficient management strategies for the sediment management of the reservoir.</p>


2010 ◽  
Vol 34 (2) ◽  
pp. 123-150 ◽  
Author(s):  
E. Nadal-Romero ◽  
D. Regüés

This study investigates the geomorphological dynamics of badland areas in the Araguás catchment (0.45 km2) in the Central Pyrenees. The genesis and development of badlands in the Central Pyrenees is favoured by the presence of Eocene marls and a markedly seasonal climate. The Araguás catchment has been monitored since 2004. Analysis of weathering processes and regolith dynamics showed that alternating freeze-thaw and wetting-drying cycles are the main causes of regolith development and weathering, and effectiveness and intensity of these processes is maximum in winter and summer. Evolution of the badland surfaces is related to regolith moisture level and temperature, closely associated with the season and slope exposure, which cause cyclical variations in regolith physical conditions. The most important effect associated with regolith dynamics is the temporal delay between maximum rainfall erosivity and variation in maximum surface runoff generation, reflected in seasonal differences in sediment transport. The dynamics of weathering and erosion processes affecting badland areas are the principal factors controlling geomorphological development, and the extreme hydrological and sedimentological responses of badlands are the main effects of such morphologies. From a hydrological point of view, badlands increase water production, and flood frequency relative to neighbouring areas; from a sedimentological point of view, suspended sediment transport from badland areas can reach amounts two or three orders of magnitude higher than other nearby environments. Given these results, possible responses of badland dynamics to altered hydroclimatic regime are briefly discussed.


2012 ◽  
Vol 1 (33) ◽  
pp. 7
Author(s):  
Hung-Chu Hsu ◽  
A. Torres-Freyermuth ◽  
Tian-Jian Hsu ◽  
Hwung-Hweng Hwung

Regarding the hydrodynamics, within the past two decades it has become popular in numerical modeling of free-surface flow to adopt a Reynolds-averaged Navier-Stokes approach, where the volume of fluid (VOF) method is utilized to track the evolution of free-surface. However, this robust numerical model has not been widely applied to the study of sediment transport processes. In this study, we shall extend the numerical model to simulate suspended sediment transport and study the erosion pattern during the initial stage of the dam break flow. We also conducted a series of experiments in a horizontal channel of rectangular section and recorded the snap shots of surface profiles of a dam- break wave during the initial stage of dam-break. Measured data is utilized here to study the hydrodynamics and to validate the numerical model.


2012 ◽  
Vol 1 (33) ◽  
pp. 26 ◽  
Author(s):  
Dean Patterson

To date, no suitable theoretical basis has been derived to predict with reliable accuracy the shoreward sand transport under waves in the deeper water outside the surf zone. This is important for understanding the rate of recovery of beaches after major storm erosion and, in some circumstances, to quantify net shoreward supply of sand to the shoreline from the active lower shore-face below the depth of storm erosion bar development. Even a relatively low rate of long term shoreward net supply may contribute to shoreline stability where it offsets a gradient in the longshore sand transport that would otherwise lead to recession. This paper outlines the results of analysis of a 41 year dataset of beach and nearshore profile surveys to quantify annual average rates of shoreward net sand transport in 6-20m water in an area where the profiles are not in equilibrium due to the existence of a residual river mouth ebb delta bar lobe. Additionally, an empirical adaptation of the sheet flow relationship of Ribberink and Al-Salem (1990) to provide for the effects of ripples has been derived from large wave flume data and correlates well with the measured Gold Coast transport rates. These have been applied to a new coastline modelling system developed as part of research into the long term evolution of Australia’s central east coast region in response to sea level change and longshore sand transport processes, which combines the one-line concept of shoreline profile translation within the zone of littoral sand transport with cross-shore profile evolution across the deeper shore-face profile below that zone. It demonstrates the importance of providing for both the shoreward supply from the continental shelf and the varying profile response time-scale across the shore-face in predicting shoreline evolution.


Sign in / Sign up

Export Citation Format

Share Document