scholarly journals Enzymatic Phorbol Esters Degradation using the Germinated Jatropha Curcas Seed Lipase as Biocatalyst: Optimization Process Conditions by Response Surface Methodology

Author(s):  
Avita Kusuma Wardhani ◽  
Chusnul Hidayat ◽  
Pudji Hastuti

<p>Utilization of Jatropha curcas seed cake is limited by the presence of phorbol esters (PE), which are the main toxic compound and heat stable. The objective of this research was to optimize the reaction conditions of the enzymatic PE degradation of the defatted Jatropha curcas seed cake (DJSC) using the acetone-dried lipase from the germinated Jatropha curcas seeds as a biocatalyst. Response Surface Methodology (RSM) using three-factors-three-levels Box-Behnken design was used to evaluate the effects of the reaction time, the ratio of buffer volume to DJSC, and the ratio of enzyme to DJSC on PE degradation. The results showed that the optimum conditions of PE degradation were 29.33 h, 51.11 : 6 (mL/g), and 30.10 : 5 (U/g cake) for the reaction time, the ratio of buffer volume to DJSC, and the ratio of enzyme to DJSC, respectively. The predicted degradation of PE was 98.96% and not significantly different with the validated data of PE degradation. PE content was 0.035 mg/g, in which it was lower than PE in non-toxic Jatropha seeds. The results indicated that enzymatic degradation of PE might be a promising method for degradation of PE.  Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 22<sup>nd</sup> December 2015; Revised: 1<sup>st</sup> April 2016; Accepted: 14<sup>th</sup> April 2016</em></p><p><strong>How to Cite:</strong> Wardhani, A.K., Hidayat, C., Hastuti, P. (2016). Enzymatic Phorbol Esters Degradation using the Germinated Jatropha Curcas Seed Lipase as Biocatalyst: Optimization Process Conditions by Response Surface Methodology. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (3): 346-353 (doi:10.9767/bcrec.11.3.574.346-353)</p><p><strong>Permalink/DOI:</strong> <a href="http://doi.org/10.9767/bcrec.11.3.574.346-353">http://doi.org/10.9767/bcrec.11.3.574.346-353</a></p>

2021 ◽  
Vol 6 (2) ◽  
pp. 7-15
Author(s):  
T.O. Rabiu ◽  
N.A. Folami ◽  
N.A. Badiru ◽  
N.A. Kinghsley ◽  
B.T. Dare ◽  
...  

The ever-growing concern for the safety of lives and the environment as well as the depletion in fossil fuels reserves across the globe has led to the keen interests of many researchers in the field of renewable energy. This study was therefore undertaken to investigate the trans-esterification optimization process for biodiesel production from palm kernel using response surface methodology. The materials for the trans-esterification processes were palm kernel oil, Methanol and sodium hydroxide. The effects of reaction temperature (oC), catalyst concentration (wt%) and reaction time (min) on the yield were evaluated. The properties of the biodiesel produced showed that it met the ASTM standard for biodiesel. A quadratic polynomial model, Yield (%) = 78.60–3.12A–.62B + 0.00C -0.75AB – 3.50AC + 1.50BC + 2.82A2– 0.18B2 + 1.08C2, was developed that can be used to predict yield of biodiesel at any value of the different parameters investigated. The ANOVA for the model of the biodiesel yield obtained indicates that the models fit well in describing the relationship between the predictor (biodiesel yield) and the factors (methanol to oil ratio, catalyst concentration and reaction time). The optimal trans-esterification conditions were found to be 60°C for temperature, 60minutes for reaction time, 0.878w% of oil as Sodium hydroxide (catalyst) concentration and methanol/oil ratio of 1:6. At these optimal conditions, the biodiesel yield was fond to be 89.32% The generated biodiesel had high cetane number, better engine ignitability and poses lesser pollution problems than petroleum diesel.


2018 ◽  
Vol 24 (4) ◽  
pp. 357-368 ◽  
Author(s):  
Olga Govedarica ◽  
Milovan Jankovic ◽  
Snezana Sinadinovic-Fiser ◽  
Dragan Govedarica

Epoxidized vegetable oils are widely used in the chemical industry. Their production requires the optimization of process conditions to maximize the epoxy yield. Therefore, the epoxidation of linseed oil with peracetic acid generated in situ in the presence of an ion exchange resin as a catalyst was optimized using response surface methodology combined with Box-Behnken design. The effects of temperature (65?85?C), hydrogen peroxide-to-oil unsaturation mole ratio (1.1:1?1.5:1), catalyst amount (10?20 wt.%), and reaction time (5?13 h) on the epoxy yield were studied. According to analysis of variance, the developed regression model was significant with a coefficient of determination (R2) of 98.95%. Temperature of 70.6?C, hydrogen peroxide-to-oil unsaturation mole ratio of 1.5:1, catalyst amount of 20 wt.%, and reaction time of 7 h were determined as the optimal process conditions using the model. At these conditions, a relative epoxy yield of 84.73?0.07% was achieved, which agreed closely with the predicted value of 87.60%. The epoxidized linseed oil with high epoxy oxygen content (8.27?0.01%) and low iodine number (4.22?0.49 g iodine/100 g oil) was obtained approximately isothermally in a batch process and under relatively mild and safe conditions.


2011 ◽  
Vol 366 ◽  
pp. 366-369
Author(s):  
Feng Gao ◽  
Rong Fu ◽  
Ming Yang Qian ◽  
Zhu Min Wang ◽  
Xiang Zhang

Response surface methodology was used to optimize the soaking Mg leaching ratio from the boron slurry screened by 25 fractional factorial design. Five effective factors such as H2SO4 concentrations, reaction time, reaction temperature and stir velocity were tested by using 25 fractional factorial design criterion and three effective factors H2SO4 concentrations, reaction time and reaction temperature showed significant effect(P2SO4 concentrations of 0.29mol/l, reaction time of 90 min and reaction temperature of 50°C. Three runs of additional confirmation experiments were conducted. The mixture magnesium leaching value was 58.20%.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Yingpeng Tong ◽  
Yu Jiang ◽  
Dan Guo ◽  
Yongqiu Yan ◽  
Shiping Jiang ◽  
...  

Saffron, which has many kinds of biological activities, has been widely used in medicine, cosmetics, food, and other fields of health promotion industries. Crocins are the main component of saffron (Crocus sativus L.). At present, most of the extraction methods for crocins require long time or special instruments to complete the process and some of them are not suitable for industrial production at present. In this article, homogenate extraction technology which is a convenient and efficient method was developed for crocins extraction from saffron. Firstly, the influences of extraction voltage, extraction time, ethanol concentration, and temperature on crocins yield were studied by single factor experiments; and then response surface methodology (RSM) was used to optimize levels of four variables based on the result of single factor experiments. Results showed that the optimum extraction process conditions for crocins were as follows: extraction voltage, 110 V; ethanol concentration, 70%; extraction temperature, 57°C; and extraction time, 40 s. Based on these conditions, the extraction yield of crocins can reach 22.76% which is higher than ultrasonic extraction method. Therefore, homogenate extraction is an effective way to extract crocins from saffron with higher extraction yield and shorter extraction time.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yu-Bin Ji ◽  
Fang Dong ◽  
Miao Yu ◽  
Long Qin ◽  
Dan Liu

The response surface methodology was employed to optimize the synthesis conditions of seleno-Sargassum fusiforme(Harv.) Setch. polysaccharide. Three independent variables (reaction time, reaction temperature, and ratio of Na2SeO3to SFPSI) were tested. Furthermore, the characterization and antioxidant activity of Se-SFPSIin vivowere investigated. The result showed that the actual experimental Se content of Se-SFPSI was 3.352 mg/g at the optimum reaction conditions of reaction time 8 h, reaction temperature 71°C, and ratio of Na2SeO3to SFPSIB 1.0 g/g. A series of experiments showed that the characterization of Se-SFPSIB was significantly different from that of SFPSIB. Additionally, antioxidant activity assay indicated that the Se-SFPSIB could increase catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity of mice bearing tumor S180in blood, heart, and liver while decreasing malondialdehyde (MDA) levels. It can be concluded that selenylation is a feasible approach to obtain seleno-polysaccharide which was utilized as highly biological medicine or functional food.


2019 ◽  
Vol 19 (4) ◽  
pp. 849
Author(s):  
Nurul Atikah Amin Yusof ◽  
Nursyamsyila Mat Hadzir ◽  
Siti Efliza Ashari ◽  
Nor Suhaila Mohamad Hanapi ◽  
Rossuriati Dol Hamid

Optimization of the lipase catalyzed enzymatic synthesis of betulinic acid amide in the presence of immobilized lipase, Novozym 435 from Candida antartica as a biocatalyst was studied. Response surface methodology (RSM) and 5-level-4-factor central-composite rotatable design (CCRD) were employed to evaluate the effects of the synthesis parameters, such as reaction time (20–36 h), reaction temperature (37–45 °C), substrate molar ratio of betulinic acid to butylamine (1:1–1:3), and enzyme amounts (80–120 mg) on the percentage yield of betulinic acid amide by direct amidation reaction. The optimum conditions for synthesis were: reaction time of 28 h 33 min, reaction temperature of 42.92 °C, substrate molar ratio of 1:2.21, and enzyme amount of 97.77 mg. The percentage yield of actual experimental values obtained 65.09% which compared well with the maximum predicted value of 67.23%. The obtained amide was characterized by GC, GCMS and 13C NMR. Betulinic acid amide (BAA) showed a better cytotoxicity compared to betulinic acid as the concentration inhibited 50% of the cell growth (IC50) against MDA-MB-231 cell line (IC50 < 30 µg/mL).


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Teresa Delgado ◽  
Bruna Paim ◽  
José Alberto Pereira ◽  
Susana Casal ◽  
Elsa Ramalhosa

Osmotic dehydration of chestnut slices in sucrose was optimized for the first time by Response Surface Methodology (RSM). Experiments were planned according to a three-factor central composite design (α=1.68), studying the influence of sucrose concentration, temperature and time, on the following parameters: volume ratio, water activity, color variation, weight reduction, solids gain, water loss and normalized moisture content, as well as total moisture, ash and fat contents. The experimental data was adequately fitted into second-order polynomial models with coefficients of determination (R2) from 0.716 to 0.976, adjusted-R2 values from 0.460 to 0.954, and non-significant lacks of fit. The optimal osmotic dehydration process conditions for maximum water loss and minimum solids gain and color variation were determined by the “Response Optimizer” option: 83% sucrose concentration, 20 °C and 9.2 hours. Thus, the best operational conditions corresponded to high sugar concentration and low temperature, improving energy saving and decreasing the process costs.


Sign in / Sign up

Export Citation Format

Share Document