scholarly journals Chemical and Structural Changes of Ozonated Empty Fruit Bunch (EFB) in a Ribbon-Mixer Reactor

2021 ◽  
Vol 16 (2) ◽  
pp. 383-395
Author(s):  
Nurul Suhada Abdur Rasid ◽  
Amnani Shamjuddin ◽  
Nor Aishah Saidina Amin

Agricultural wastes especially empty fruit bunch (EFB) are abundantly available to be utilized as a feedstock for biochemical synthesis or biofuel production. The components of the waste include lignin, hemicellulose and cellulose. Cellulose, the polymer of glucose, is the active component for producing bio-based chemicals. However, it is difficult to isolate cellulose since lignin, the most outer layer in the waste is recalcitrant. Therefore, the agricultural wastes need to be pre-treated prior to downstream processing. The aim of this study was to investigate the effect of ozone pretreatment on lignin degradation and total reducing sugar (TRS) yield. EFB was pre-treated using ozone gas in a ribbon-mixer reactor. The chemical and structural changes of ozonated EFB were analysed. The highest delignification obtained were 95.7 wt.% and TRS yield was enhanced to 84.9% at a moisture content of 40 wt.% with 60 g/m3 ozone concentration within one hour of reaction time. Both NMR and FTIR spectra conferred major peaks inferring higher lignin degradation could be achieved using ozonolysis. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

2021 ◽  
Vol 302 ◽  
pp. 02015
Author(s):  
Chaichana Chatkaew ◽  
Elizabeth Jayex Panakkal ◽  
Wawat Rodiahwati ◽  
Suchata Kirdponpattara ◽  
Santi Chuetor ◽  
...  

Most of the agricultural wastes in developing countries are disposed of by on-site combustion leading to unmanaged environmental pollutions. Conversion of agricultural wastes to value-added products, such as bioethanol and biogas, is a promising method to reduce agro-waste after harvesting seasons. In this study, Citrus maxima peels (Pomelo peels) was selected to be converted to reducing sugars, which could be a raw material to produce other value-added products. To promote enzymatic hydrolysis reactions, pomelo peels were pretreated with sodium hydroxide by variations of three pretreatment parameters, including temperature (50-100 ºC), time (0.5-6 h), and concentration of NaOH (0.5-3.0 M). Box-Behnken design (BBD) was applied in Response Surface Methodology (RSM) to determine the optimized pretreatment condition and to find the relationship between pretreatment factors and reducing sugar yields. The predicted optimal pretreatment condition was determined to be at 94.28 ºC, 4.5h, 2.17M with reducing sugar yield of 98.9 mg/g of dried pomelo peels. The results clearly showed that reducing sugar yields obtained from pretreated pomelo peels were 1.87 folds higher than untreated biomass (52.81 mg/g of pomelo peels). Therefore, this study demonstrated the potential of pomelo peels to be used as an alternative raw material for value-added products rather than being a landfill or causal agent of pollution.


REAKTOR ◽  
2017 ◽  
Vol 16 (4) ◽  
pp. 199
Author(s):  
Fahriya Puspita Sari ◽  
Nissa Nurfajrin Solihat ◽  
Sita Heris Anita ◽  
Fitria Fitria ◽  
Euis Hermiati

ENHANCEMENT OF REDUCING SUGAR PRODUCTION FROM OIL PALM EMPTY FRUIT BUNCH BY PRETREATMENT USING ORGANIC ACID IN PRESSURIZED REACTOR. Organic acids are potential to create more environmentally friendly process in the pretreatment of lignocellulosic biomass for bioethanol production. This study was aimed to investigate the influence of organic acid pretreatment in reducing sugar production in a pressurized reactor with various resident times and temperatures on enzymatic hydrolysis of OPEFB. Two different organic acids (maleic acid and oxalic acid) were used in the pretreatment of oil palm empty fruit bunch (OPEFB) using a pressurized reactor. Factorial design using three different temperatures (170, 180, and 190°C) and four resident times (15, 30, 45, and 60 min) were employed, followed by enzymatic hydrolysis. Each condition conducted two repetitions. Analysis was conducted on the reducing sugar that was produced after saccharification by means of the severity factor of each pretreatment condition. Maleic acid showed higher reducing sugar yield with lower severity factor than oxalic acid with the same operating conditions. The highest yield of reducing sugars (80.84%) was obtained using maleic acid at 170 for 60 minutes with severity factor of 1.836. Keywords: bioethanol; organic acid pretreatment; pressurized reactor; severity factor; oil palm empty fruit bunches;   Abstrak Asam organik berpotensi dalam membantu proses praperlakuan dari biomassa lignoselulosa untuk memproduksi bioetanol yang ramah lingkungan. Penelitian ini bertujuan untuk mengetahui pengaruh asam organik, suhu dan waktu operasi terhadap produksi gula pereduksi dengan reaktor bertekanan pada tandan kosong kelapa sawit. Dua asam organik yang berbeda yaitu asam oksalat dan asam maleat digunakan untuk proses praperlakuan tandan kosong kelapa sawit (TKKS) dengan bantuan reaktor bertekanan. Dalam proses praperlakuan digunakan tiga suhu yang berbeda yaitu suhu 170, 180, dan 190°C dan empat waktu operasi 15, 30, 45, dan 60 min yang dilanjutkan dengan proses hidrolisis enzimatis. Setiap kondisi dilakukan dua kali pengulangan. Analisa yang digunakan adalah analisa uji gula pereduksi dan severity factor pada kondisi tiap praperlakuan. Asam maleat menunjukkan hasil yang lebih baik dengan severity factor yang lebih rendah dibandingkan menggunakan asam oksalat dengan kondisi operasi yang sama. Hasil yang didapatkan menunjukkan bahwa praperlakuan tandan kosong kelapa sawit dengan bantuan reaktor bertekanan memiliki rendemen gula pereduksi optimum sebesar 80,84% dengan menggunakan asam maleat pada suhu 170°C selama 60 menit dengan severity factor sebesar 1,836. Kata kunci: bioetanol; praperlakuan asam organik; reaktor bertekanan; severity factor; tandan kosong kelapa sawit.


2021 ◽  
pp. 32-40
Author(s):  
Rafał M. Łukasik

The European (and global) energy sector is in a process of profound transformation, making it essential for changes to take place that influence energy producers, operators, and regulators, as well as consumers themselves, as they are the ones who interact in the energy market. The RED II Directive changes the paradigm of the use of biomass in the heat and electricity sectors, by introducing sustainability criteria with mandatory minimum greenhouse gas (GHG) emission reductions and by establishing energy efficiency criteria. For the transport sector, the extension of the introduction of renewables to all forms of transport (aviation, maritime, rail and road short and long distance), between 2021-2030, the strengthening of energy efficiency and the strong need to reduce GHG emissions, are central to achieving the national targets for renewables in transport, representing the main structural changes in the European decarbonisation policy in that sector. It is necessary to add that biomass is potentially the only source of renewable energy that makes it possible to obtain negative GHG emission values, considering the entire life cycle including CO2 capture and storage. Hence, this work aims to analyse the relevance of biomass for CHP and in particular, the use of biomass for biofuels that contribute to achieving carbon neutrality in 2050. The following thematic sub-areas are addressed in this work: i) the new environmental criteria for the use of biomass for electricity in the EU in light of now renewable energy directive; ii) current and emerging biofuel production technologies and their respective decarbonization potential; iii) the relevance or not of the development of new infrastructures for distribution renewable fuels, alternatives to the existing ones (biomethane, hydrogen, ethanol); iv) the identification of the necessary measures for biomass in the period 2020-2030


Author(s):  
Suzana Yusup ◽  
Murni Melati Ahmad ◽  
Yoshimitsu Uemura ◽  
Razol Mahari Ali ◽  
Azlin Suhaida Azmi ◽  
...  

2015 ◽  
Vol 43 (2) ◽  
pp. 85-89 ◽  
Author(s):  
Gábor Megyeri ◽  
Nándor Nemestóthy ◽  
Milan Polakovic ◽  
Katalin Bélafi-Bakó

Abstract Cheap, renewable lignocellulosic materials are relevant to the future of biofuel production. Wood and agricultural wastes (e.g. straw, corn stover) provide a raw material source that cannot be used for human consumption, thus biofuels from such sources do not threaten the food supply. The aim of the work was to carry out the pre-treatment and hydrolysis of lignocellulosic material in the same ionic liquid solvent (1-n-butyl-3- methyl-imidazolium-chloride, [Bmim]Cl), using ground wheat straw and a mixture of corn (Zea mays) leaf and stover, as substrates. Our measurements show that it is possible to achieve an acceptable glucose content from the cellulose by applying Cellic® CTec2 and Cellic® HTec2 enzyme complexes.


2016 ◽  
Vol 675-676 ◽  
pp. 31-34
Author(s):  
Achara Kleawkla ◽  
Pannarai Chuenkruth

Sugar is very important raw material of many industries such as food, beverage and renewable energy. In this research, pretreatment and hydrolysis of agricultural wastes to produce reducing sugars for an ethanol production were investigated. The rice stalk and corn stover from agricultural wastes were firstly pretreated with sodium hydroxide at 121 °C in different time as 20 30 and 40 minutes for removal of lignin. After that, the condition of hydrolysis using sulfuric acid of the pretreated rice stalk and corn stover was optimized. The optimum condition that obtained the highest reducing sugar content from rice stalk and corn stover of 76.12 and 136.25 mg/ml were using 1.0 % v/v sulfuric acid at temperature of 121 °C for a hydrolysis time of 40 minutes. This research made value adding in the industrial processing, decrease environmental problem and reduce global warming crisis by optimized utilization of agricultural waste.


2019 ◽  
Vol 4 (5) ◽  
pp. 79-80
Author(s):  
Wafaa H. Mahmoud ◽  
A. E. Elbeltagy ◽  
Hanaa A. Koura ◽  
S. F. Farag Allah

2020 ◽  
Author(s):  
Iryanti F. Nata ◽  
Chairul Irawan ◽  
Meilana D. Putra ◽  
Cheng-Kang Lee

Abstract The sulfonated carbon solid acid catalyst (C-SO3H) was successfully generated from palm empty fruit bunch (PEFB) carbon via hydrothermal sulfonation by addition of hydroxyethylsulfonic acid and citric acid. The C-SO3H was identified contain of 1.75 mmol/g of acidity and 40.2% of sulphur. The surface morphology of C-SO3H showed pores with diameters of 3-6 µm and crystalline index (CrI) of material was decreased to 63.8% due to changed structure become carbon. The surface area of carbon was increased significantly from 11.5 to 239.65 m2 g- 1 after hydrothermal treatment. The identification of functional groups of -SO3H, COOH and -OH were detected by Fourier Transform Infra-Red (FT-IR). The optimum catalytic activity of C-SO3H was achieved via hydrolysis reaction with 60.4% of total reducing sugar (TRS) yield. The both concentrations of C-SO3H and cassava peel starch are 5% (w v- 1) at 100 oC for 1 h. Stability of C-SO3H showed good performance for 4th repeated used; it showed insignificant of activity that decreased only of 6%. Thus, the C-SO3H is a candidate for green and potential sulfonated solid acid catalyst for wide range applications.


2020 ◽  
Author(s):  
Iryanti F. Nata ◽  
Chairul Irawan ◽  
Meilana D. Putra ◽  
Cheng-Kang Lee

Abstract The sulfonated carbon solid acid catalyst (C-SO3H) was successfully generated from palm empty fruit bunch (PEFB) carbon via hydrothermal sulfonation by addition of hydroxyethylsulfonic acid and citric acid. The C-SO3H was identified contain of 1.75 mmol/g of acidity and 40.2% of sulphur. The surface morphology of C-SO3H showed pores with diameters of 3-6 µm and crystalline index (CrI) of material was decreased to 63.8% due to changed structure become carbon. The surface area of carbon was increased significantly from 11.5 to 239.65 m2g-1 after hydrothermal treatment. The identification of functional groups of -SO3H, COOH and -OH were detected by Fourier Transform Infra-Red (FT-IR). The optimum catalytic activity of C-SO3H was achieved via hydrolysis reaction with 60.4% of total reducing sugar (TRS) yield. The both concentrations of C-SO3H and cassava peel starch is 5% at 100 oC for 1 h. Stability of C-SO3H showed good performance for 4th repeated used; it showed insignificant of activity that decreased only of 6%. Thus, the C-SO3H is a candidate for green and potential sulfonated solid acid catalyst for wide range applications.


Sign in / Sign up

Export Citation Format

Share Document