Reducing Sugar Production from Agricultural Wastes by Acid Hydrolysis

2016 ◽  
Vol 675-676 ◽  
pp. 31-34
Author(s):  
Achara Kleawkla ◽  
Pannarai Chuenkruth

Sugar is very important raw material of many industries such as food, beverage and renewable energy. In this research, pretreatment and hydrolysis of agricultural wastes to produce reducing sugars for an ethanol production were investigated. The rice stalk and corn stover from agricultural wastes were firstly pretreated with sodium hydroxide at 121 °C in different time as 20 30 and 40 minutes for removal of lignin. After that, the condition of hydrolysis using sulfuric acid of the pretreated rice stalk and corn stover was optimized. The optimum condition that obtained the highest reducing sugar content from rice stalk and corn stover of 76.12 and 136.25 mg/ml were using 1.0 % v/v sulfuric acid at temperature of 121 °C for a hydrolysis time of 40 minutes. This research made value adding in the industrial processing, decrease environmental problem and reduce global warming crisis by optimized utilization of agricultural waste.

2022 ◽  
Vol 1048 ◽  
pp. 451-458
Author(s):  
Megawati ◽  
Astrilia Damayanti ◽  
Radenrara Dewi Artanti Putri ◽  
Zuhriyan Ash Shiddieqy Bahlawan ◽  
Astika Arum Dwi Mastuti ◽  
...  

S. platensis is a microalga that contains carbohydrate composition of 30.21% which makes it potential to be used as raw material for ethanol production. Hydrolysis of S. platensis is the first step for converting its carbohydrates into monosaccharides. The second step is fermentation of monosaccharides into ethanol. This research aims to study the effect of temperature and microalgae concentration on the hydrolysis of S. platensis using sulfuric acid as catalyst. This research was conducted using 300 mL sulfuric acid of 2 mol/L, hydrolysis temperatures of 70, 80 and 90 °C, and microalgae concentrations of 20, 26.7, and 33.3 g/L. The effect of temperature is significant in the hydrolysis of S. platensis using sulfuric acid. At microalgae concentration of 20 g/L and hydrolysis time of 35 minutes, the higher the temperatures (70, 80, and 90 °C), the more the glucose yields would be (8.9, 13.5, and 22.9%). This temperature effect got stronger when the hydrolysis was running for 15 minutes. Every time the hydrolysis temperature increased by 10 °C, the glucose yield increased by 13.0% at microalgae concentration of 33.3 g/L. At temperature of 90 °C and time of 35 minutes, the higher the microalgae concentrations (20, 26.7, and 33.3 g/L), the higher the glucose yields would be (25.5, 27.7, and 28.2%). The highest glucose concentration obtained was 2.82 g/L at microalgae concentration of 33.3 g/L, temperature of 90 °C, and time of 35 minutes.


2021 ◽  
Vol 4 (2) ◽  
pp. 58-65
Author(s):  
Fenti Visiamah ◽  
Wasinton Simanjuntak

This study conducted to assess the most appropriate method or hydrolysis of beneng taro tuber to optimize the production of bioethanol to investigate the effect of pHs, times, and temperatures on reducing sugar produced. The concentration of reducing sugar was determined using a UV-Vis spectrophotometer.  The result obtained indicated that the optimum amount of reducing sugar (910,875 mg/L ) achieved at pH 10, hydrolysis time of 3 hours, and the temperature of 90 °C.  Fermentation of reducing sugar using the powdered bark of raru plant produced 0,18765 % (v/v) of bioethanol and fermentation using Saccharomyces cerevisiae produced 0,2116 % (v/v) of bioethanol.  


2021 ◽  
Vol 72 (1) ◽  
pp. e389
Author(s):  
M. Camlica ◽  
G. Yaldiz

The nicotine, reducing sugar and ion contents from the threshing of tobacco can re-used from the industry. The crude oil and fatty oil compositions of tobacco seeds can be considered as an alternative source of raw material for biodiesel. In this study, the nicotine, reducing sugar content, crude oil, fatty acid composition and ion content were determined in 29 genotypes and 1 cultivar of tobacco. The genetic diversity was determined among the tobacco cultivar and genotypes base on examined properties. The nicotine content varied between 0.10-0.87%, reducing sugar ranged from 9.70-21.30%, crude oil varied between 24.33-47.00% and fatty acid compositions was found in the range of 77.94-100%. Linoleic (13.92-75.04%) and butyric (0.33-64.98%) acids were the major components. Overall, the BSR-5 (52.56 mg/g) and ESR-5 (44.58 mg/g) genotypes exhibited the highest potassium contents and ESR-7 (6.54 mg/g) and ESR-8 (1.28 mg/g) genotypes had the lowest chlorine contents. As a result of this study, the highest nicotine content, reducing sugar and crude oil of tobacco were found in ESR-4, ESR-11 and BSR-5 genotypes, respectively. The dendrogram analysis divided the tobacco into two main groups and most of the same origin genotypes fell into the same group. The results indicated that the different tobacco leaves and seeds can be evaluated as an alternative source in the industry as cigarettes, biodiesel and different industrial applications such as cosmetic, oil paints and varnishes based on their chemical properties.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2221
Author(s):  
Adila Fazliyana Aili Hamzah ◽  
Muhammad Hazwan Hamzah ◽  
Hasfalina Che Man ◽  
Nur Syakina Jamali ◽  
Shamsul Izhar Siajam ◽  
...  

Pineapple waste accounts for a significant part of waste accumulated in landfill which will further contribute to the release of greenhouse gases. With the rising pineapple demands worldwide, the abundance of pineapple waste and its disposal techniques are a major concern. Exploiting the pineapple waste into valuable products could be the most sustainable way of managing these residues due to their useful properties and compositions. In this review, we concentrated on producing useful products from on-farm pineapple waste and processing waste. Bioenergy is the most suitable option for green energy to encounter the increasing demand for renewable energy and promotes sustainable development for agricultural waste. The presence of protease enzyme in pineapple waste makes it a suitable raw material for bromelain production. The high cellulose content present in pineapple waste has a potential for the production of cellulose nanocrystals, biodegradable packaging and bio-adsorbent, and can potentially be applied in the polymer, food and textile industries. Other than that, it is also a suitable substrate for the production of wine, vinegar and organic acid due to its high sugar content, especially from the peel wastes. The potentials of bioenergy production through biofuels (bioethanol, biobutanol and biodiesel) and biogas (biomethane and biohydrogen) were also assessed. The commercial use of pineapples is also highlighted. Despite the opportunities, future perspectives and challenges concerning pineapple waste utilisation to value-added goods were also addressed. Pineapple waste conversions have shown to reduce waste generation, and the products derived from the conversion would support the waste-to-wealth concept.


2017 ◽  
Vol 224 ◽  
pp. 405-410 ◽  
Author(s):  
Wen-Chao Li ◽  
Xia Li ◽  
Lei Qin ◽  
Jia-Qing Zhu ◽  
Xiao Han ◽  
...  

Jurnal Kimia ◽  
2016 ◽  
Author(s):  
Yohanes Armawan Sandi ◽  
Wiwik Susanah Rita ◽  
Yenni Ciawi

The aim of this research is to determine the effect of enzyme and acids concentration on the yield of glucose produced in the hydrolysis of Glacilaria sp. in the production of bioethanol. The concentrations of cellulase used were 200 units/mL, 400 units/mL, 600 units/mL, 800 units/mL and the concentration of sulphuric acid (H2SO4) and hydrochloric acid (HCl) used were 1%, 3%, 5%, 7% (w/v). The concentration of reduction sugar was determined using Anthrone and analyzed using UV-Vis spectrophotometry and the determination of ethanol concentration was carried out by using gas chromatography. The results showed that the contents of reducing sugar produced by sulphuric acid (H2SO4) hydrolysis were 26,19%; 36,69%; 41,40%; 45,0% (v/v), by hydrochloric acid (HCl) were 12,12%; 14,03%; 15,17%; 16,50% (v/v), and by cellulase enzyme were 46,15%; 46,73%; 47,68%; 48,25% (v/v). Optimum concentration of reducing sugar produced by hydrolysis using 800 units/mL cellulase was 48,25% (v/v). The optimum length of fermentation to produce bioethanol using Glacilaria sp. as raw material was 5 days. In the fermentation, inoculum with a concentrations of 5% and 10% (w/v) produced 0,85% and 1,51% (v/v) ethanol.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1042-1062
Author(s):  
Yu Liu ◽  
Fangfang Wang ◽  
Yangyang Sun

Bacterial cellulose (BC) was synthesized by Acetobacter xylinum using a carbon source of coconut shell hydrolysate, which was treated with an ultra-low concentration of sulfuric acid. The coconut shell was found to contain 57.13% holocellulose and 27.42% lignin. The effect of sulfuric acid concentration, reaction temperature, and reaction time on hydrolysis of coconut shell were evaluated by response surface methodology. The reducing sugar concentration was 8.39 g/L under the predicted optimum treatment at 200 °C for 32 min with a solution of 0.07% sulfuric acid. The holocellulose conversion rate was 56.1% at this condition. In a detoxification process using calcium hydroxide and activated carbon, furfural and hydroxymethylfurfural in the hydrolysate were almost completely removed, whereas formic acid and acetic acid levels decreased by 30%. After cultivation for 7 days at the reducing sugar status of 5 g/L, the BC production in medium with the detoxified hydrolysate could reach 1.66 g/L. After fermentation for 21 days, BC yield in medium using composited carbon source (20 g/L) of glucose and hydrolysate was 5.30 g/L. Structural analysis showed that BC obtained from medium of control and detoxified hydrolysate exhibited similar properties. This work provided a potential method for BC production.


2021 ◽  
Vol 302 ◽  
pp. 02010
Author(s):  
Pratchaya Muangrod ◽  
Wiriya Charoenchokpanich ◽  
Vilai Rungsardthong ◽  
Savitri Vatanyoopaisarn ◽  
Benjamaporn Wonganu ◽  
...  

Edible jellyfish have been consumed as food for more than a century with offering high protein and crunchy texture. The pepsin hydrolysis of jellyfish protein yields jellyfish protein hydrolysate (ep-JPH), reported for potential bioactivities such as antioxidant activity or antihypertensive activities. Due to the substantial number of by-products generated from jellyfish processing, the by-products were then selected as a raw material of JPH production. This research aimed to evaluate the effect of the hydrolysis time of pepsin on the antioxidant activity of ep-JPH. The dried desalted jellyfish by-products powder was enzymatically hydrolysed by 5% (w/w) pepsin, and the hydrolysis time was varied from 6, 12, 18, and 24 h at 37oC. Results showed that increased hydrolysis time increased the degree of hydrolysis (DH) and inhibition of DPPH radical. The 24 h ep-JPH possessed the highest DH and the highest inhibitory effect of DPPH radical. The results demonstrated that, in this experiment, all ep-JPHs were DPPH radical scavengers, exhibiting different inhibition activities depending on DH values.


Author(s):  
Elizabeth Jayex Panakkal ◽  
Malinee Sriariyanun ◽  
Jakaphan Ratanapoompinyo ◽  
Patchanee Yasurin ◽  
Kraipat Cheenkachorn ◽  
...  

Improper disposal of agricultural waste after harvesting season has posed serious health and environmental issues. Alternative methods to utilize agricultural waste to produce a value-added product, especially biofuel, have become the focus of research and industrial stakeholders. To make the process feasible, the maximum conversion should be achieved with the optimum operational condition. This research applied Response Surface Methodology (RSM) with the Box-Behnken design (BBD) to optimize sulfuric acid pretreatment of sugarcane bagasse by varying three pretreatment factors namely, acid concentration (0.5–3.5%), temperature (60–140℃), and time (20–100 min). Pretreated biomass was enzymatically hydrolyzed, and the effectiveness of pretreatment was examined according to the reducing sugar concentration. However, inhibitors namely, acetic acid, 5-hydroxymethylfurfural (5-HMF), and furfural were produced during pretreatment, which was analyzed through GC-MS analysis. The Box-Behnken design could optimize and correlate the effect of pretreatment parameters on the hydrolysis of sugarcane bagasse. The optimum pretreatment condition was predicted at an acid concentration of 3.50%, the temperature of 136.08℃, and the time of 75.36 min to obtain the maximum sugar production. Sugarcane bagasse pretreatment at optimum condition could produce a reducing sugar of 180.15 mg/g-sugarcane bagasse, which is 3.06 folds higher than untreated sugarcane bagasse. However, ethanol yield from pretreated biomass was less than unpretreated biomass because of the inhibitor formation. This study provides a new insight into utilizing agricultural waste in a more efficient and eco-friendly manner.


Sign in / Sign up

Export Citation Format

Share Document