scholarly journals An Experimental Study on the Bending Characteristics of Graphite/Epoxy Composite Material

2013 ◽  
Vol 13 (4) ◽  
pp. 47-53 ◽  
Author(s):  
Doo-Hwan Kim ◽  
Chong-Hyuk Choi
2011 ◽  
Vol 4 (4) ◽  
pp. 281-283 ◽  
Author(s):  
P. A. Sitnikov ◽  
A. V. Kuchin ◽  
A. G. Belykh ◽  
I. N. Vaseneva ◽  
Yu. I. Ryabkov

2014 ◽  
Vol 918 ◽  
pp. 21-26
Author(s):  
Chen Kang Huang ◽  
Yun Ching Leong

In this study, the transport theorem of phonons and electrons is utilized to create a model to predict the thermal conductivity of composite materials. By observing or assuming the dopant displacement in the matrix, a physical model between dopant and matrix can be built, and the composite material can be divided into several regions. In each region, the phonon or electron scattering caused by boundaries, impurities, or U-processes was taken into account to calculate the thermal conductivity. The model is then used to predict the composite thermal conductivity for several composite materials. It shows a pretty good agreement with previous studies in literatures. Based on the model, some discussions about dopant size and volume fraction are also made.


2018 ◽  
Vol 53 (20) ◽  
pp. 2909-2924 ◽  
Author(s):  
Ajit Dhanawade ◽  
Shailendra Kumar

Traditional machining of carbon epoxy composite material is difficult due to excessive tool wear, excessive stresses and heat generation, delamination, high surface waviness, etc. In the present paper, research work involved in the experimental study of abrasive water jet machining of carbon epoxy composite material is described. The aim of present work is to improve surface finish and studying defects in machined samples. Taguchi's orthogonal array approach is used to design experiments. Process parameters namely hydraulic pressure, traverse rate, stand-off distance and abrasive mass flow rate are considered for this study. Analysis of machined surfaces and kerf quality is carried out using scanning electron microscope to evaluate microscopic features. Further, the effect of machining parameters on surface roughness is investigated using analysis of variance approach. It is found that traverse rate and pressure are most significant parameters to control surface roughness. Optimization of process parameters is performed using grey relational analysis. Thereafter, confirmation tests are carried out to verify the improvement in the surface quality with optimum set of process parameters. It is found that surface finish of machined samples is improved by 10.75% with optimum levels of process parameters. Defects like delamination, fiber pull-out and abrasive embedment are also studied using SEM. It is observed that delamination and fiber pull-out are prominent in samples machined at low pressure and high traverse rate.


2015 ◽  
Vol 33 (3) ◽  
pp. 247-266 ◽  
Author(s):  
Pauline Tranchard ◽  
Fabienne Samyn ◽  
Sophie Duquesne ◽  
Matthieu Thomas ◽  
Bruno Estèbe ◽  
...  

2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


Sign in / Sign up

Export Citation Format

Share Document