scholarly journals Ethanol Dehydrogenation to Acetaldehyde over Co@N-Doped Carbon

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1411
Author(s):  
Aleksey N. Chernov ◽  
Tatiana V. Astrakova ◽  
Konstantin Yu. Koltunov ◽  
Vladimir I. Sobolev

Cobalt and nitrogen co-doped carbon materials (Co@CN) have recently attracted significant attention as highly efficient noble-metal-free catalysts exhibiting a large application range. In a similar research interest, and taking into account the ever-increasing importance of bioethanol as a renewable raw material, here, we report the results on ethanol dehydrogenation to acetaldehyde over Co@NC catalysts. The catalyst samples were synthesized by a variety of affordable techniques, ensuring generation of various types of Co species incorporated in carbon, such as subnanosized cobalt sites and nano-sized particles of metallic cobalt and cobalt oxides. The catalytic activity was tested under both oxidative and non-oxidative gas-phase conditions at 200–450 °C using a fixed-bed flow reactor. The non-oxidative conditions proved to be much more preferable for the target reaction, competing, however, with ethanol dehydration to ethylene. Under specified reaction conditions, ethanol conversion achieved a level of 66% with 84% selectivity to acetaldehyde at 400 °C. The presence of molecular oxygen in the feed led mainly to deep oxidation of ethanol to COx, giving acetaldehyde in a comparatively low yield. The potential contribution of carbon itself and supported cobalt forms to the observed reaction pathways is discussed.

Paliva ◽  
2020 ◽  
pp. 42-52
Author(s):  
Josef Blažek ◽  
Daria Kochetkova ◽  
Bogdan Shumeiko ◽  
Veronika Váchová ◽  
Petr Straka

The hydrotreating of vegetable oils and animal fats is a possible way to produce a high-quality renewable diesel fuel component. It can be produced by processing the bio-raw material in new units or by the co-pro-cessing of the renewable raw material together with the petroleum middle distillates in existing hydrotreating units. This work was focused on investigating the effect of the hydrogen to the feedstock ratio on the hydrotreating of a mixture of petroleum middle distillates and rapeseed oil in a weight ratio of 8:2 in a tubular fixed-bed reactor. The hydrotreating was performed using a sulfided Ni-Mo/Al2O3 catalyst, a temperature of 345 °C, a WHSV of 1.0 h-1, a pressure of 4.0 MPa and a hydrogen to the feedstock ratio in the range of 120-600 m3∙m-3. The hydrogen to feedstock ratio of 120 m3∙m-3 was not sufficient to desulfurise the feedstock to the level of 10 mg∙kg-1. On the contrary, increasing the hydrogen to feedstock ratio to above 240 m3∙m-3 had no significant effect on the yield and quality of the obtained products. Therefore, the ratio of 240 m3∙m-3 was considered as sufficient for the hydrotreating of the mixture of the petroleum middle distillates and rapeseed oil.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 788
Author(s):  
João Paulo de Lima Ferreira ◽  
Alexandre José de Melo Queiroz ◽  
Rossana Maria Feitosa de Figueirêdo ◽  
Wilton Pereira da Silva ◽  
Josivanda Palmeira Gomes ◽  
...  

The residue generated from the processing of Tacinga inamoena (cumbeba) fruit pulp represents a large amount of material that is discarded without proper application. Despite that, it is a raw material that is source of ascorbic acid, carotenoids and phenolic compounds, which are valued in nutraceutical diets for allegedly combating free radicals generated in metabolism. This research paper presents a study focused on the mathematical modeling of drying kinetics and the effect of the process on the level of bioactive of cumbeba residue. The experiments of cumbeba residue drying (untreated or whole residue (WR), crushed residue (CR) and residue in the form of foam (FR)) were carried out in a fixed-bed dryer at four air temperatures (50, 60, 70 and 80 °C). Effective water diffusivity (Deff) was determined by the inverse method and its dependence on temperature was described by an Arrhenius-type equation. It was observed that, regardless of the type of pretreatment, the increase in air temperature resulted in higher rate of water removal. The Midilli model showed better simulation of cumbeba residue drying kinetics than the other models tested within the experimental temperature range studied. Effective water diffusivity (Deff) ranged from 6.4890 to 11.1900 × 10−6 m2/s, 2.9285 to 12.754 × 10−9 m2/s and 1.5393 × 10−8 to 12.4270 × 10−6 m2/s with activation energy of 22.3078, 46.7115 and 58.0736 kJ/mol within the temperature range of 50–80 °C obtained for the whole cumbeba, crushed cumbeba and cumbeba residue in the form of foam, respectively. In relation to bioactive compounds, it was observed that for a fixed temperature the whole residue had higher retention of bioactive compounds, especially phenolic compounds, whereas the crushed residue and the residue in the form of foam had intermediate and lower levels, respectively. This study provides evidence that cumbeba residue in its whole form can be used for the recovery of natural antioxidant bioactive compounds, mainly phenolic compounds, with the possibility of application in the food and pharmaceutical industries.


2018 ◽  
Vol 41 (5) ◽  
pp. 1027-1034 ◽  
Author(s):  
Lijuan Zhu ◽  
Feng Jin ◽  
Minghui Fan ◽  
Junxu Liu ◽  
Rui Chang ◽  
...  

2016 ◽  
Vol 723 ◽  
pp. 633-639
Author(s):  
Waenkaew Pantupho ◽  
Arthit Neramittagapong ◽  
Nuttawut Osakoo ◽  
Jatuporn Wittayakun ◽  
Sirinuch Loiha

Iron-supported HZSM-5 catalysts were prepared by hydrothermal (Fe-HZSM-5_HYD) and impregnation methods (Fe/HZSM-5_IMP). The active species of binuclear-iron complex and iron-substituted zeolite framework, confirmed by EXAFS analysis, were observed on Fe/HZSM-5_IMP and Fe-HZSM-5_HYD, respectively. The catalysts were used for production of dimethyl ether (DME) by methanol dehydration at 200-350 °C using fixed bed flow reactor. Fe/HZSM-5_IMP showed higher catalytic conversion than Fe-HZSM-5_HYD. However, the Fe/HZSM-5_IMP catalyst was less selective to DME product and strongly deactivated for 24h. The deactivation might due to transformation of binuclear-iron to the a-iron site which was strong acidic strengh. The iron-substituted zeolite framework of Fe-HZSM-5_HYD showed high stability toward methanol dehydration. Moreover, the catalyst showed advantages of good selective to DME and low carbon deposition on surface. These results suggested that the iron-substituted zeolite framework structure could improve catalytic performance for mrthanol dehydration.


2013 ◽  
pp. 279-287 ◽  
Author(s):  
Radojka Razmovski ◽  
Vesna Vucurovic ◽  
Uros Miljic ◽  
Vladimir Puskas

Jerusalem artichoke (JA) is a low-requirement crop, which does not interfere with food chain, and is a promising carbon source for industrial fermentation. Microbial conversion of such a renewable raw material to useful products, such as ethanol, is an important objective in industrial biotechnology. In this study, ethanol was efficiently produced from the hydrolyzates of JA obtained at different pH values (pH 2.5, pH 3.0 and pH 3.5), temperature (120, 130, 132 and 134?C) and hold time (30 and 60 min) by Saccharomyces cerevisiae. The efficient degradation of JA by HCl under certain experimental conditions was confirmed by thin-layer chromatography. Ethanol concentration of 7.52% (w/w), which corresponds to 93.89 % of the theoretical yield is achieved by ethanol fermentation of JA hydrolyzate obtained at pH 2.5.


Author(s):  
Martins Andzs ◽  
Voldemars Skrupskis

Obtaining of a new ecological heat insulation material from always renewable raw material in nature, wood and hemp, derived from wood and hemp fibre remains left from the production process. The study was carried out to find hemp wood parts (shives), fiber, and material first possible compositions together with wood fibres, to produce heat insulation materials. The use of the heat insulation material would be meant for dwelling and recreation houses. In the present research the main characteristics of these materials are determined: moisture content, density, water absorption, as well as the coefficient of heat transmission.


Author(s):  
Andi Budirohmi

Polyuretanes are widely used as elastomers, coatings, adhesivesand binders,interior and exterior cars, furniture,shoe soles, carpets, rigit and flexible foams, membrane materials as well as constuction materials .The production of polyurethanes is largely derived  from  polyols derived from petroleum . Howover, petroleum  is a non- renewable raw material . Thus it is necessary to look alternative feedstock  for the manufacture of polyol  as a polyurethane raw material. Synnthesis polyurethane by polymerization process  using  polyol volume based on polyol  oleat acid  polypropylenglycol ( PPG ) in order to know  whether fatty acid can be used  as raw materials  of polyurethane manufacture.From the result of the study. Based on Fourier Transform Infra  Red ( FTIR), showed,that the product  produced is polyol with obtained hydroxyl  group ( OH group )with hydroxylnumber is 129,81 mg KOH / g and 157,60 mg KOH / g sample of 70 


MRS Advances ◽  
2018 ◽  
Vol 3 (61) ◽  
pp. 3575-3579
Author(s):  
Francine M. Nunes ◽  
Eduarda M. Rangel ◽  
Fernando M. Machado ◽  
Rubens Camaratta ◽  
Letícia P. Cardoso ◽  
...  

AbstractThe food processing industry highlights the daily generation of large amounts of eggshell solid residue. In this way, this residue becomes a non renewable raw material to be reused as an additive in red ceramics, in order to reduce the volume of disposal to the environment and improve the physical properties of the product. The objective of this work was to evaluate the forming moisture, linear shrinkage of drying and shrinkage of drying burning of ceramic test pieces (CS’s) with formulations with 2% and 3% of white eggshell residue (ER) incorporated in clay. The clay and ER were collected in the city of Pelotas-RS. The ER sample was analyzed by X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD). After pressing, natural and artificial drying was carried out and the CS’s were burned. These were evaluated through normative parameters C-020/95, C-021/95 and C-026/95. The values obtained for the forming moisture were between 5.82 and 8.78%, for the linear shrinkage of drying between 0.10 and 0.43% and, for the linear contraction burning between -0.29 and 0.08%. The results showed that the addition of ER to the ceramic mass helped in the reduction of the forming moisture and the linear shrinkage of the ceramic test pieces.


Sign in / Sign up

Export Citation Format

Share Document