scholarly journals Hole doping effect of MoS2 via electron capture of He+ ion irradiation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sang Wook Han ◽  
Won Seok Yun ◽  
Hyesun Kim ◽  
Yanghee Kim ◽  
D.-H. Kim ◽  
...  

AbstractBeyond the general purpose of noble gas ion sputtering, which is to achieve functional defect engineering of two-dimensional (2D) materials, we herein report another positive effect of low-energy (100 eV) He+ ion irradiation: converting n-type MoS2 to p-type by electron capture through the migration of the topmost S atoms. The electron capture ability via He+ ion irradiation is valid for supported bilayer MoS2; however, it is limited at supported monolayer MoS2 because the charges on the underlying substrates transfer into the monolayer under the current condition for He+ ion irradiation. Our technique provides a stable and universal method for converting n-type 2D transition metal dichalcogenides (TMDs) into p-type semiconductors in a controlled fashion using low-energy He+ ion irradiation.

Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1091
Author(s):  
Minjong Lee ◽  
Joohoon Kang ◽  
Young Tack Lee

In this paper, we propose a solvent-free device fabrication method using a melt-blown (MB) fiber to minimize potential chemical and thermal damages to transition-metal-dichalcogenides (TMDCs)-based semiconductor channel. The fabrication process is composed of three steps; (1) MB fibers alignment as a shadow mask, (2) metal deposition, and (3) lifting-up MB fibers. The resulting WSe2-based p-type metal-oxide-semiconductor (PMOS) device shows an ON/OFF current ratio of ~2 × 105 (ON current of ~−40 µA) and a remarkable linear hole mobility of ~205 cm2/V·s at a drain voltage of −0.1 V. These results can be a strong evidence supporting that this MB fiber-assisted device fabrication can effectively suppress materials damage by minimizing chemical and thermal exposures. Followed by an MoS2-based n-type MOS (NMOS) device demonstration, a complementary MOS (CMOS) inverter circuit application was successfully implemented, consisted of an MoS2 NMOS and a WSe2 PMOS as a load and a driver transistor, respectively. This MB fiber-based device fabrication can be a promising method for future electronics based on chemically reactive or thermally vulnerable materials.


2021 ◽  
Vol 8 (8) ◽  
pp. 210554
Author(s):  
Lin Tao ◽  
Lixiang Han ◽  
Qian Yue ◽  
Bin Yao ◽  
Yujue Yang ◽  
...  

Carrier mobility is one of most important figures of merit for materials that can determine to a large extent the corresponding device performances. So far, extensive efforts have been devoted to the mobility improvement of two-dimensional (2D) materials regarded as promising candidates to complement the conventional semiconductors. Graphene has amazing mobility but suffers from zero bandgap. Subsequently, 2D transition-metal dichalcogenides benefit from their sizable bandgap while the mobility is limited. Recently, the 2D elemental materials such as the representative black phosphorus can combine the high mobility with moderate bandgap; however the air-stability is a challenge. Here, we report air-stable tellurium flakes and wires using the facile and scalable physical vapour deposition (PVD) method. The prototype field-effect transistors were fabricated to exhibit high hole mobility up to 1485 cm 2 V −1 s −1 at room temperature and 3500 cm 2 V −1 s −1 at low temperature (2 K). This work can attract numerous attentions on this new emerging 2D tellurium and open up a new way for exploring high-performance optoelectronics based on the PVD-grown p-type tellurium.


2018 ◽  
Vol 24 (S1) ◽  
pp. 1564-1565
Author(s):  
Eliska Mikmekovâ ◽  
Ales Patâk ◽  
Ilona Mullerovâ ◽  
Ludëk Frank ◽  
Benjamin Daniel ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 756 ◽  
Author(s):  
Qiyuan Wang ◽  
Jing Chen ◽  
Youwei Zhang ◽  
Laigui Hu ◽  
Ran Liu ◽  
...  

Transition metal dichalcogenides (TMDCs) demonstrate great potential in numerous applications. However, these applications require a precise control of layer thickness at the atomic scale. In this work, we present an in-situ study of the self-limiting oxidation process in MoTe2 by ozone (O3) treatment. A precise layer-by-layer control of MoTe2 flakes can be achieved via multiple cycles of oxidation and wet etching. The thinned MoTe2 flakes exhibit comparable optical properties and film quality to the pristine exfoliated ones. Besides, an additional p-type doping is observed after O3 oxidation. Such a p-doping effect converts the device properties of MoTe2 from electron-dominated to hole-dominated ambipolar characteristics.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7340
Author(s):  
Yoonsok Kim ◽  
Taeyoung Kim ◽  
Eun Kyu Kim

Two-dimensional (2D) materials, such as molybdenum disulfide (MoS2) of the transition metal dichalcogenides family, are widely investigated because of their outstanding electrical and optical properties. However, not much of the 2D materials research completed to date has covered large-area structures comprised of high-quality heterojunction diodes. We fabricated a large-area n-MoS2/p-Si heterojunction structure by sulfurization of MoOx film, which is thermally evaporated on p-type silicon substrate. The n-MoS2/p-Si structure possessed excellent diode characteristics such as ideality factor of 1.53 and rectification ratio in excess of 104. Photoresponsivity and detectivity of the diode showed up to 475 mA/W and 6.5 × 1011 Jones, respectively, in wavelength ranges from visible to near-infrared. The device appeared also the maximum external quantum efficiency of 72%. The rise and decay times of optical transient response were measured about 19.78 ms and 0.99 ms, respectively. These results suggest that the sulfurization process for large-area 2D heterojunction with MoS2 can be applicable to next-generation electronic and optoelectronic devices.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohamed A. Basyooni ◽  
Shrouk E. Zaki ◽  
Mohamed Shaban ◽  
Yasin Ramazan Eker ◽  
Mucahit Yilmaz

Abstract The distinctive properties of strongly correlated oxides provide a variety of possibilities for modulating the properties of 2D transition metal dichalcogenides semiconductors; which represent a new class of superior optical and optoelectronic interfacing semiconductors. We report a novel approach to scaling-up molybdenum disulfide (MoS2) by combining the techniques of chemical and physical vapor deposition (CVD and PVD) and interfacing with a thin layer of monoclinic VO2. MoWO3/VO2/MoS2 photodetectors were manufactured at different sputtering times by depositing molybdenum oxide layers using a PVD technique on p-type silicon substrates followed by a sulphurization process in the CVD chamber. The high quality and the excellent structural and absorption properties of MoWO3/VO2/MoS2/Si with MoS2 deposited for 60 s enables its use as an efficient UV photodetector. The electronically coupled monoclinic VO2 layer on MoS2/Si causes a redshift and intensive MoS2 Raman peaks. Interestingly, the incorporation of VO2 dramatically changes the ratio between A-exciton (ground state exciton) and trion photoluminescence intensities of VO2/(30 s)MoS2/Si from < 1 to > 1. By increasing the deposition time of MoS2 from 60 to 180 s, the relative intensity of the B-exciton/A-exciton increases, whereas the lowest ratio at deposition time of 60 s refers to the high quality and low defect densities of the VO2/(60 s)MoS2/Si structure. Both the VO2/(60 s)MoS2/Si trion and A-exciton peaks have higher intensities compared with (60 s) MoS2/Si structure. The MoWO3/VO2/(60 s)MoS2/Si photodetector displays the highest photocurrent gain of 1.6, 4.32 × 108 Jones detectivity, and ~ 1.0 × 1010 quantum efficiency at 365 nm. Moreover, the surface roughness and grains mapping are studied and a low semiconducting-metallic phase transition is observed at ~ 40 °C.


Nanoscale ◽  
2017 ◽  
Vol 9 (31) ◽  
pp. 11027-11034 ◽  
Author(s):  
L. Ma ◽  
Y. Tan ◽  
M. Ghorbani-Asl ◽  
R. Boettger ◽  
S. Kretschmer ◽  
...  

Two-dimensional transition metal dichalcogenides (TMDCs) exhibit excellent optoelectronic properties.


Nanoscale ◽  
2021 ◽  
Author(s):  
Pu Tan ◽  
Kaixuan Ding ◽  
Xiumei Zhang ◽  
Zhenhua Ni ◽  
Kostya Ostrikov ◽  
...  

Because of suitable band gap and high mobility, two-dimensional transition metal dichalcogenides (TMDs) materials are promising in future microelectronic devices. However, controllable p-type and n-type doping of TMDs is still...


Sign in / Sign up

Export Citation Format

Share Document