scholarly journals Isolation and Characterization of Biosurfactant-producing Alcaligenes sp. YLA11 and its Diesel Degradation Potentials

2021 ◽  
Vol 9 (2) ◽  
pp. 7-12
Author(s):  
Abdulrahman Abdulhamid Arabo ◽  
Raji Arabi Bamanga ◽  
Mujiburrahman Fadilu ◽  
Musa Abubakar ◽  
Fatima Abdullahi Shehu ◽  
...  

This study aimed to isolate and identify biosurfactant producing and diesel alkanes degrading bacteria. For this reason, bacteria isolated from the diesel contaminated site were screened for their potential to produce biosurfactants and degrade diesel alkanes. Primary selection of diesel degraders was carried out by using conventional enrichment culture technique where 12 bacterial strains were isolated based on their ability to grow on minimal media supplemented with diesel as sole carbon source, which was followed by qualitative screening methods for potential biosurfactant production. Isolate B11 was the only candidate that shows positive signs for drop collapse, foaming, haemolytic test, oil displacement of more than 22 ± 0.05 mm, and emulsification (E24) of 14 ± 0.30%. The effect of various culture parameters (incubation time, diesel concentration, nitrogen source, pH and temperature) on biodegradation of diesel was evaluated. The optimum incubation time was confirmed to be 120 days for isolates B11, the optimum PH was confirmed as 8.0 for the isolate, Similarly, the optimum temperature was confirmed as 35oC. In addition, diesel oil was used as the sole carbon source for the isolates. The favourable diesel concentration was 12.5 % (v/v) for the isolate. The isolate has shown degradative ability towards Tridecane (C13), dodecane, 2, 6, 10-trimethyl- (C15), Tetradecane (C14), 2,6,10-Trimethyltridecane (C16), Pentadecane (C15). It degraded between 0.27% - 9.65% individual diesel oil alkanes. The strain has exhibited the potential of degrading diesel oil n-alkanes and was identified as Alcaligenes species strain B11 (MZ027604) using the 16S rRNA sequencing.

2014 ◽  
Vol 955-959 ◽  
pp. 728-731
Author(s):  
Ping Guo ◽  
Jian Guo Lin ◽  
Bin Xia Cao ◽  
Na Ta

Fourteen petroleum hydrocarbon degrading bacteria strains were isolated from oil-contaminated site. Isolated strains were able use diesel oil as sole carbon and energy source. Bacterial strain HD1 was selected due to the luxuriant growth on oil agar. The oil degradation rate of strain HD1 was analyzed using UV-spectrometry-based methods. The result showed that the rate of diesel oil degradation of 75% was observed after 14days of cultivation.


2011 ◽  
Vol 8 (4) ◽  
pp. 1582-1587 ◽  
Author(s):  
M. Mohsen Nourouzi ◽  
T. G. Chuah ◽  
Thomas S. Y. Choong ◽  
C. J. Lim

Mixed bacteria from oil palm plantation soil (OPS) were isolated to investigate their ability to utilize glyphosate as carbon source. Results showed that approximately all of the glyphosate was converted to aminomethyl-phosphonic acid (AMPA) (99.5%). It is worthy to note that mixed bacteria were able to degrade only 2% of AMPA to further metabolites. Two bacterial strainsi.e. Stenotrophomonas maltophiliaandProvidencia alcalifacienswere obtained from enrichment culture. Bacterial isolates were cultured individually on glyphosate as a sole carbon source. It was observed that both isolates were able to convert glyphosate to AMPA.


2014 ◽  
Vol 1073-1076 ◽  
pp. 666-671
Author(s):  
Guang Chun Li ◽  
Chun Xiang Piao ◽  
Katsuhiko Saido ◽  
Seon Yong Chung

Biodegradation of the styrene trimer was investigated, and its degrading bacteria were screened and isolated. Complex bacteria ST (strain ST1 and ST2) was isolated from contaminated soil by polystyrene and named by strain ST1 and ST2. ST1 and ST2 were identified by 16S rDNA and classified byOchrobactrum intermediumsp. andPseudomonas aeruginosasp., respectively. Biodegradation experiments were performed in batch and styrene trimer was used as a sole carbon source. Isolated two bacteria were used as degrading microorganisms. Initial liquid phase concentration of the styrene trimer was 50 mg/L. 95% of the styrene trimer was degraded in 17 days by the complex strain ST. The concentration was analyzed by using GC. Metabolites of bacteria were analyzed and three kinds of products that were identified by GC/MS.


2021 ◽  
Author(s):  
Krishnendu Majhi ◽  
Moitri Let ◽  
Urmi Halder ◽  
Rajib Bandopadhyay

Abstract Copper (Cu) is a vital micronutrient for all living organisms below its toxicity limit. Various industrial activities, mining deposits, excessive use of harmful chemicals, waste discharges, and drugs are the main reason for the emerging copper concentration. Emphases of the current study were to isolate and characterize highly copper-tolerating bacterial (CTB) species from a copper-contaminated site. In enrichment culture techniques, 24 copper tolerant microbial isolates were evaluated and the maximum tolerable concentration (MTC) was determined using various concentrations of copper sulfate pentahydrate (CuSO4.5H2O) solution. Three bacterial strains named GKSM2, GKSM6, and GKSM11 were tolerant to 350 mg/l of CuSO4.5H2O. The 16S rRNA gene sequencing and phylogeny data revealed that these CTB belong to species Bacillus zanthoxyli, Bacillus stercoris, and Pseudomonas alcaliphila species. CTB showed their optimized growth at moderate salt concentration (0.1-0.5M NaCl), temperature range (20-45˚C) and wide pH range (pH 5.0-11). All the strains can produce various Plant growth stimulating (PGS) traits viz., phytohormones (IAA, GA), proline, nitrogen fixation, ammonification, and antioxidant enzymes in presence and absence of Cu2+ stress. The result displays that adsorption of Cu2+ ions evidenced by TEM, SEM, and SEM-EDX analysis.


2020 ◽  
Author(s):  
Rabia Saleem ◽  
Safia Ahmed

AbstractBeing a significant protein L-glutaminases discovers potential applications in various divisions running from nourishment industry to restorative and cure. It is generally disseminated in microbes, actinomycetes, yeast and organisms. Glutaminase is the principal enzyme that changes glutamine to glutamate. The samples were gathered from soil of Taxila, Wah Cantt and Quetta, Pakistan for the isolation of glutaminase producing bacteria. After primary screening, subordinate screening was done which includes multiple testification such as purification, observation of morphological characters and biochemical testing of bacterial strains along with 16S rRNA sequence homology testing. Five bacterial strains were selected showing glutaminase positive test in screening, enzyme production via fermentation and enzymatic and protein assays. Taxonomical characterization of the isolates identified them as Bacillus subtilis U1, Achromobacter xylosoxidans G1, Bacillus subtilis Q2, Stenotrophomonas maltophilia U3 and Alcaligenes faecalis S3. The optimization of different effectors such as incubation time, inducers, carbon source, pH, and nitrogen source were also put under consideration. There was slight difference among incubation of bacterial culture, overall, 36 hours of incubation time was the best for glutaminase production by all the strains. Optimal pH was around 9 in Achromobacter xylosoxidans G1 and Alcaligenes faecalis S3, pH 6 in Bacillus subtilis U1, pH 8 in Stenotrophomonas maltophilia U3, pH 6-8 in Bacillus subtilis Q2. Best glutaminase production was obtained at 37°C by Bacillus subtilis U1and Bacillus subtilis Q2, 30°C for Achromobacter xylosoxidans G1, Stenotrophomonas maltophilia U3 and 25°C by Alcaligenes faecalis S3. The carbon sources put fluctuated effects on activity of enzyme in such a way that glucose was the best carbon source for Bacillus subtilis U1and Bacillus subtilis Q2, Sorbitol for Achromobacter xylosoxidans G1 and Alcaligenes faecalis S3 while xylose was the best for Stenotrophomonas maltophilia U3. Yeast extract and Trypton were among good nitrogen sources for Achromobacter xylosoxidans G1 and of Bacillus subtilis U1 respectively. Glutamine was the best inducer for Bacillus subtilis Q2, Alcaligenes faecalis S3 and Stenotrophomonas maltophilia U3, while lysine for Achromobacter xylosoxidans G1 and glycine act as good inducer in case of Bacillus subtilis U1. After implementation of optimal conditions microbial L-glutaminase production can be achieved and the bacterial isolates have a great potential for production of glutaminase enzyme and their applications.


2012 ◽  
Vol 518-523 ◽  
pp. 2030-2033 ◽  
Author(s):  
Jia Niu ◽  
Ji Hua Wang ◽  
Di Cui ◽  
Xiang Liu ◽  
Hui Guang

A Gram positive bacterium strain 12-3 for degrading DDT effectively was isolated from the DDT contaminated site of the shipyard in Guangzhou by enrichment culture, which could utilize DDT as the sole carbon source for growth. This strain was identified as Pseudomonas species. Based on the phenotype, physiological and biochemical identification, and fatty acids identification. Testing theirs DDT degradation rate with HPLC, the results showed that in a shaky flask containing 20 mg/L DDT, this strain could degrade DDT with degradation efficiency of 51.6% in 8 days at 30°C, pH 8.0.


2021 ◽  
Vol 58 (6) ◽  
pp. 435-441
Author(s):  
Swati Rastogi ◽  
Sheel Ratna ◽  
Rajesh Kumar

Abstract In the present study, three potentially Pb(II)-resistant and biosurfactant-producing bacterial strains were isolated from a total of 23 strains using various screening methods, investigated for their biosorption of Pb(II) and used for the biodegradation of used motor oil. The results show that strain E1 (Bacillus haynesii) has significantly high efficiency in biodegradation of used motor oil, up to 82 % in the first three days. Maximum Pb(II) biosorption capacities of 238.09 mg/g and 99.01 mg/g were determined for strains E1 and F5 (Pseudomonas aeruginosa), respectively. The biosorption process was found to be in good agreement with the Langmuir isotherm for both E1 (R2 = 0.9614) and F5 (R2 = 0.9646), suggesting monolayer biosorption. The four common screening methods, namely the haemolytic assay, the determination of surface tension, the emulsifying activity and the foam test, were also correlated with the Pearson correlation method.


2010 ◽  
Vol 76 (9) ◽  
pp. 2884-2894 ◽  
Author(s):  
Efraín Manilla-Pérez ◽  
Alvin Brian Lange ◽  
Stephan Hetzler ◽  
Marc Wältermann ◽  
Rainer Kalscheuer ◽  
...  

ABSTRACT In many microorganisms, the key enzyme responsible for catalyzing the last step in triacylglycerol (TAG) and wax ester (WE) biosynthesis is an unspecific acyltransferase which is also referred to as wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT; AtfA). The importance and function of two AtfA homologues (AtfA1 and AtfA2) in the biosynthesis of TAGs and WEs in the hydrocarbon-degrading marine bacterium Alcanivorax borkumensis SK2 have been described recently. However, after the disruption of both the AtfA1 and AtfA2 genes, reduced but substantial accumulation of TAGs was still observed, indicating the existence of an alternative TAG biosynthesis pathway. In this study, transposon-induced mutagenesis was applied to an atfA1 atfA2 double mutant to screen for A. borkumensis mutants totally defective in biosynthesis of neutral lipids in order to identify additional enzymes involved in the biosynthesis of these lipids. At the same time, we have searched for a totally TAG-negative mutant in order to study the function of TAGs in A. borkumensis. Thirteen fluorescence-negative mutants were identified on Nile red ONR7a agar plates and analyzed for their abilities to synthesize lipids. Among these, mutant 2 M131 was no longer able to synthesize and accumulate TAGs if pyruvate was used as the sole carbon source. The transposon insertion was localized in a gene encoding a putative cytochrome c family protein (ABO_1185). Growth and TAG accumulation experiments showed that the disruption of this gene resulted in the absence of TAGs in 2 M131 but that growth was not affected. In cells of A. borkumensis SK2 grown on pyruvate as the sole carbon source, TAGs represented about 11% of the dry weight of the cells, while in the mutant 2 M131, TAGs were not detected by thin-layer and gas chromatography analyses. Starvation and lipid mobilization experiments revealed that the lipids play an important role in the survival of the cells. The function of neutral lipids in A. borkumensis SK2 is discussed.


Author(s):  
Y. Murtala ◽  
B. C. Nwanguma ◽  
L. U. S. Ezeanyika

Background: Despite the banned on the use of dichlorodiphenyltrichloroethane (DDT) and other Persistent Organic Pollutants (POPs) by the Stockholm Convention for their toxicity, emerging shreds of evidence have indicated that DDT is, however, still in use in developing countries. This might increase the global burden of DDT contamination and its hazardous effects. Aim: This study focused on the isolation and characterization of p,p’-DDT-degrading bacterium from a tropical agricultural soil. Methodology: Standard isolation procedure was used for the screening and isolation of the strain. The 16S rRNA and phylogenetic analyses were used to identify the isolate and established protocols were followed to characterize the strain. Results: A new strain belonging to the genus Aeromonas was isolated from agricultural soil using minimal salt-p,p’-DDT enrichment medium. The 16S rRNA sequencing was used to identify the strain and the partial sequence was deposited in the NCBI GenBank as Aeromonas sp. Strain MY1. This mesophilic isolate was capable of utilizing up to 50 mgL-1 of p,p’-DDT as the sole carbon source at an optimum pH of 7.5 and optimum temperature of 35 °C within 120 h under aerobic conditions. Fe2+ (0.2 mgL-1) demonstrated a stimulatory effect on the p,p’-DDT degradation capacity by the strain MY1. However, Zn, Cu, Pb, Hg, Ag and Cr ions have demonstrated various patterns of inhibitory effect on the p,p’-DDT degradation capacity of the isolate at 0.2 mgL-1. The strain MY1 could be a promising candidate for the bioremediation of p,p’-DDT contaminant. Conclusion: Aeromonas sp. strain MY1 was capable of utilizing p,p’-DDT as a sole carbon source under aerobic conditions. The utilization capacity of the strain was influenced by some heavy metals. Fe was found to enhance the p,p’-DDT utilization capacity of the isolate at a lower concentration. While Zn, Cu, Pb, Hg, Ag and Cr showed various patterns of inhibitory effect.


2016 ◽  
Vol 27 (1) ◽  
pp. 44-47 ◽  
Author(s):  
Mihaela Carmen Eremia ◽  
Irina Lupescu ◽  
Mariana Vladu ◽  
Maria Petrescu ◽  
Gabriela Savoiu ◽  
...  

Abstract Polyhydroxyalcanoates (PHAs) are specifically produced by a wide variety of bacteria, as an intracellular energy reserve in the form of homo- and copolymers of [R]-β-hydroxyalkanoic acids, depending on the C source used for microorganism growth, when the cells are grown under stressing conditions. In this paper we present microbiological accumulation of poly-3-hydroxyoctanoate (PHO) by using a consortium of bacterial strains, Pseudomonas putida and Bacillus subtilis, in a rate of 3:1, grown on a fermentation medium based on sodium octanoate as the sole carbon source. The experiments performed in the above mentioned conditions led to the following results: from 18.70 g sodium octanoate (7.72 g/L in the fermentation medium) used up during the bioprocess, 3.93-3.96 g/L dry bacterial biomass and 1.834 - 1.884 g/L PHA, containing 85.83 - 86.8% PHO, were obtained.


Sign in / Sign up

Export Citation Format

Share Document