Improving the bending resistance of double-layer printed flexible OLEDs with PEDOT: PSS-PEO composite HIL films

Author(s):  
Yan Wang ◽  
Dongyu Zhang ◽  
Qiang Gao

Abstract Flexible organic light-emitting diodes (OLEDs) are expected to have excellent device performance and mechanical robustness in many areas, such as wearable electronics and display devices. For the traditional materials of OLED anode, ITO is undoubtedly the most mature transparent conductive electrode available. However, the brittle and rigid nature of ITO severely limit the development of flexible OLED. In this work, a solution blending film consisting of poly (3,4 ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) and poly (ethylene oxide) (PEO) was used as a hybrid hole injection layer, where PEO polymer in the composite films can greatly improve the bending resistance of device. The printed flexible OLEDs doped with PEO exhibit impressive mechanical durability, maintaining 80.4% of its maximum external quantum efficiency after 1000 bends at a radius of curvature of 10 mm, compared to 46.3% for the counterpart without PEO doping.

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
So Yeong Jeong ◽  
Hye Rin Shim ◽  
Yunha Na ◽  
Ki Suk Kang ◽  
Yongmin Jeon ◽  
...  

AbstractWearable electronic devices are being developed because of their wide potential applications and user convenience. Among them, wearable organic light emitting diodes (OLEDs) play an important role in visualizing the data signal processed in wearable electronics to humans. In this study, textile-based OLEDs were fabricated and their practical utility was demonstrated. The textile-based OLEDs exhibited a stable operating lifetime under ambient conditions, enough mechanical durability to endure the deformation by the movement of humans, and washability for maintaining its optoelectronic properties even in water condition such as rain, sweat, or washing. In this study, the main technology used to realize this textile-based OLED was multi-functional near-room-temperature encapsulation. The outstanding impermeability of TiO2 film deposited at near-room-temperature was demonstrated. The internal residual stress in the encapsulation layer was controlled, and the device was capped by highly cross-linked hydrophobic polymer film, providing a highly impermeable, mechanically flexible, and waterproof encapsulation.


2013 ◽  
Vol 750-752 ◽  
pp. 1919-1923 ◽  
Author(s):  
Guo Xian Zhou ◽  
Ming Wei Yuan ◽  
Lin Jiang ◽  
Ming Long Yuan ◽  
Hong Li Li

The laponite-poly (L-lactide) composite films are prepared by the method of solution blending with polylactide (PLA) and laponite. The result shows that the homogeneous and smooth composite film is prepared with 1, 4-dioxane. Thermogravimetry analysis (TG) and tensile strength studies demonstrate that the thermal stability and tensile strength are improved with the laponite added. The scanning electron microscopy (SEM) measurement indicates that the pores of composite films get uniform and network structure is more and more compact with compared to pure PLA film. The present study reveals that the laponite as a complexing agent can improve the mechanical properties and thermal stability of PLA.


2007 ◽  
Vol 62 (10-11) ◽  
pp. 609-619 ◽  
Author(s):  
Zivayi Chiguvare ◽  
Jürgen Parisi ◽  
Vladimir Dyakonov

The effects of thermal annealing on the bulk transport properties of poly(3-hexylthiophene) (P3HT) were studied by analyzing room temperature current-voltage characteristics of polymer thin films sandwiched between indium tin oxide/poly[ethylene dioxythiophene]:poly[styrene sulfonate] (ITO/PEDOT:PSS) and aluminum electrodes, before and after a thermal annealing step. It was observed that annealing takes place in two steps: (1) Dedoping of the polymer of impurities such as oxygen, remnant solvent, water, leading to a decrease in the conductivity of the film, and (2) thermally induced motion of the polymer chains leading to closer packing, thus, stronger inter-chain interaction and, consequently, increase in conductivity. It was also observed that the ITO/PEDOT:PSS/P3HT hole injection barrier increases on annealing the ITO/PEDOT:PSS/P3HT/Al thin film devices. The implications of impurity dedoping and closer packing on the output characteristics of bulk heterojunction polymer-fullerene thin film solar cells are discussed.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 574
Author(s):  
Zhicai Zhu ◽  
Liqin Yao ◽  
Qilong Zhang ◽  
Hui Yang

In this paper, homogeneous polystyrene (PS) microspheres with controllable sizes of 40 nm, 80 nm, and 120 nm were synthesized by controlling the temperature of solvothermal method. In order to explore the effect of PS microspheres on dielectric-hydrophobic properties of the composite films, the composite films containing polystyrene, Polydimethylsiloxane, and P(VDF-TrFE) with high dielectric and hydrophobicity were successfully prepared by a simple and feasible solution blending method. The dielectric constant and hydrophobicity of composite films were boosted by increasing the mass fraction of PS content and decreasing the size of PS due to the enhanced interfacial polarization and the uniform surface micro bulge structure. Meanwhile, the composite films maintain a low loss tangent. Typically, the dielectric constant with 5 wt.% 40 nm PS reached to 29 at 100Hz, which is 4 times that of PDMS/P(VDF-TrFE) (mass ratio: 2/3). Otherwise, the largest the contact angle of 126° in the same composition was remarkably larger than the pure PDMS/P(VDF-TrFE) (110°). These improved properties have more potential applications in the electric wetting devices.


2002 ◽  
Vol 750 ◽  
Author(s):  
François Thiery ◽  
Yves Pauleau ◽  
Jacques Pelletier

ABSTRACTNanocrystalline copper/hydrogenated amorphous carbon films have been deposited on Si substrates at the floating potential using a distributed electron cyclotron resonance microwave plasma reactor. In this deposition technique, the microwave plasma-enhanced chemical vapor deposition process of carbon from argon-methane or argon-acetylene mixtures of various compositions was associated with the sputter deposition of copper from a copper target. The total pressure was fixed at 0.13 Pa. For deposition, the substrates mounted on a water-cooled substrate holder were maintained at ambient temperature. The composition of films determined by Rutherford backscattering spectroscopy, energy recoil detection analyses and nuclear reaction analyses was investigated as a function of the gas phase composition. The structure of films was identified by X-ray diffraction (XRD) techniques and the size of copper crystallites incorporated in the amorphous carbon matrix was deduced from XRD data. The magnitude of residual stresses developed in these films was calculated from the radius of curvature of film/substrate samples determined by profilometry. The residual stress values were found to be nearly independent on the composition of films and deposition parameters.


Author(s):  
Xingzhen Yan ◽  
Bo Li ◽  
Kaian Song ◽  
Fan Yang ◽  
Yanjie Wang ◽  
...  

Abstract We have prepared an ultra-thin flexible transparent conductive electrode with high folding endurance composed of randomly arranged silver nanowires (AgNWs) embedded in polydimethylsiloxane (PDMS). A simple preparation method was performed to connect a glass substrate coated with a AgNW network and a glass substrate coated with PDMS. The glass substrate was then removed after the PDMS solidified, and the AgNW–PDMS composite film was peeled off. Moreover, the problem of the high contact resistance caused by the random arrangement of AgNWs was solved by the local joule heat generated by applying voltage to both sides of the AgNW–PDMS composite structure to weld the overlapping AgNWs. The sheet resistance (Rs ) of AgNW–PDMS composite films with different AgNW deposition concentrations decreased by 46.4%–75.8% through this electro-sintering treatment. The embedded structure of the AgNW–PDMS composite ensures better voltage resistance and environmental stability under high temperature and humidity conditions compared with a AgNW network attached to a glass substrate. Additionally, the substrate-free, excellent elasticity and high resilience characteristics resulted in the Rs value of the same composite electrode only increasing by 2.9 ohm/sq after folding four times. The advantage of the metal thermal conductivity makes the joule heat generated by electric injection rapidly diffuse and dissipate in the AgNW-based transparent heater with faster response time and smaller voltage drive than indium tin oxide.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2976 ◽  
Author(s):  
S. Wageh ◽  
Su-Ling Zhao ◽  
Xiao-Yi Xie ◽  
Song Gao ◽  
Ahmed Al-Ghamdi

In this paper, a series of ITO/ZnO/ZnO nanorods/MEH-PPV/Al were prepared with different thicknesses of MEH-PPV that were changed from 15, 10 to 7 nm. The electric field in the devices was analyzed. An increase in the electric field on ZnO made hole injection easy and the electrons tunnel fast through thinner MEH-PPV to ZnO. This made the carriers prefer to recombine inside the ZnO layer, and the emission of ZnO was predominant under direct current (DC) bias. Furthermore, another device was fabricated with the structure of AZO (Al-doped ZnO)/ZnO/ZnO nanorods/MEH-PPV/Al. Ultra-violet (UV) electroluminescence (EL) at 387 nm from ZnO band edge emission was realized under DC bias. The turn-on voltage of the devices having AZO as the electrode is lower than that of ITO, and the EL power is enhanced. This work also studies the effect of inserting LiF underneath the Al electrode and above the layer of MEH-PPV. The LiF film inserted caused an obvious decrease in turn-on voltage of the devices and a pronounced increase in the EL power. The mechanism of electroluminescence enhancement is also discussed.


2007 ◽  
Vol 124-126 ◽  
pp. 423-426
Author(s):  
Jae Hong Jeon ◽  
Hee Hwan Choe ◽  
Jong Hyun Seo

In order to improve long term stability of a-Si:H TFT for AM-OLED application a new driving method compensating Vth shift requires a new device structure of which hole injection is enhanced. ITO film was investigated for the hole injection material because it is essential material for display devices and has high work function favorable for hole injection. From I-V characteristics of TFTs with two types of source and drain material, i.e. Cr and ITO, the contact properties were measured and compared. Although electron injection property of ITO was worse than Cr, hole injection property was comparable to that of Cr.


Author(s):  
Hossein Sojoudi ◽  
Fernando Reiter ◽  
Samuel Graham

A transparent conductive electrode comprised of alternating layers of graphene grown by chemical vapor deposition (CVD) and metallic single wall nanotubes (M-SWNTs) is presented. It was found that the addition of two single-layer graphene sheets enhances the conduction pathways in the M-SWNT film, yielding up to a 75% decrease in the sheet resistance with little sacrifice in the optical transmittance. Enhancements in the electrical properties of the films were made through a heat treatment process followed by nitric acid and thionyl chloride doping, yielding a sheet resistance of 70 Ω/sq with a transmittance of 78% at 550 nm. Composite films having undergone an annealing step were found to have stable electrical properties upon exposure to atmospheric conditions while doped films demonstrated limited stability.


Author(s):  
Ya-Li Huang ◽  
Shao-Wei Bian

Constructing intelligent clothing through integrating flexible and wearable electronics in daily clothing has raised the demand for flexible supercapacitors with high energy storage, small thickness and mechanical durability. Herein, a...


Sign in / Sign up

Export Citation Format

Share Document