polysialic acids
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 26 (4) ◽  
pp. 643-647
Author(s):  
Wei-jiang Zhao ◽  
Jia-hui He ◽  
Shuang-xi Chen

Polysialic acid (PSA), a polymer of alpha-2,8 linked sialic acid residues, is a negatively charged macromolecular glycan mainly attached to neural cell adhesion molecules (NCAM). Studies have shown that PSA is not only essential for the development of normal brain circulation, but also for synaptic plasticity, learning and memory in adults. Although the occurrence, features, biosynthesis, and physiological roles of PSA and related effects on related diseases, including schizophrenia, bipolar disorder, neurodegenerative diseases and cancer, have been well reviewed, the important roles of PSA and its mimics in the regeneration of the nervous system following injury have not been well discussed. As a consequence, this article comprehensively reviews the effects of small organic compounds that simulate PSA, such as tegaserod and 5-nonyloxytryptamine (5-NOT), on the nervous system of mammals, suggesting that these mimetics may have tremendous therapeutic potential, especially for strategies aimed at tissue repair after injury of the nervous system.


2021 ◽  
Author(s):  
Warren W. Wakarchuk ◽  
Theresa Lindhout ◽  
Cynthia R. Bainbridge ◽  
Will J. Costain ◽  
Michel Gilbert

Polysialic acids are bioactive carbohydrates found in eukaryotes and some bacterial pathogens. The bacterial polysialyltransferases (PSTs), which catalyze the synthesis of polysialic acid capsules, have previously been identified in select strains of Escherichia coli and Neisseria meningitidis and are classified in the Carbohydrate-Active enZYmes Database as glycosyltransferase family GT-38. In this study using DNA sequence analysis and functional characterization we have identified a novel polysialyltransferase from the bovine/ovine pathogen Mannheimia haemolytica A2 (PSTMh). The enzyme was expressed in recombinant form as a soluble maltose-binding-protein fusion in parallel with the related PSTs from E. coli K1 and N. meningitidis group B in order to perform a side-by-side comparison. Biochemical properties including solubility, acceptor preference, reaction pH optima, thermostability, kinetics, and product chain length for the enzymes were compared using a synthetic fluorescent acceptor molecule. PSTMh exhibited biochemical properties that make it an attractive candidate for chemi-enzymatic synthesis applications of polysialic acid. The activity of PSTMh was examined on a model glycoprotein and the surface of a neuroprogenitor cell line where the results supported its development for use in applications to therapeutic protein modification and cell surface glycan remodelling to enable cell migration at implantation sites to promote wound healing. The three PSTs examined here demonstrated different properties that would each be useful to therapeutic applications.


2021 ◽  
Author(s):  
Warren W. Wakarchuk ◽  
Theresa Lindhout ◽  
Cynthia R. Bainbridge ◽  
Will J. Costain ◽  
Michel Gilbert

Polysialic acids are bioactive carbohydrates found in eukaryotes and some bacterial pathogens. The bacterial polysialyltransferases (PSTs), which catalyze the synthesis of polysialic acid capsules, have previously been identified in select strains of Escherichia coli and Neisseria meningitidis and are classified in the Carbohydrate-Active enZYmes Database as glycosyltransferase family GT-38. In this study using DNA sequence analysis and functional characterization we have identified a novel polysialyltransferase from the bovine/ovine pathogen Mannheimia haemolytica A2 (PSTMh). The enzyme was expressed in recombinant form as a soluble maltose-binding-protein fusion in parallel with the related PSTs from E. coli K1 and N. meningitidis group B in order to perform a side-by-side comparison. Biochemical properties including solubility, acceptor preference, reaction pH optima, thermostability, kinetics, and product chain length for the enzymes were compared using a synthetic fluorescent acceptor molecule. PSTMh exhibited biochemical properties that make it an attractive candidate for chemi-enzymatic synthesis applications of polysialic acid. The activity of PSTMh was examined on a model glycoprotein and the surface of a neuroprogenitor cell line where the results supported its development for use in applications to therapeutic protein modification and cell surface glycan remodelling to enable cell migration at implantation sites to promote wound healing. The three PSTs examined here demonstrated different properties that would each be useful to therapeutic applications.


2021 ◽  
Vol 15 ◽  
Author(s):  
Punam Rawal ◽  
Liqin Zhao

Sialic acids refer to a unique family of acidic sugars with a 9-carbon backbone that are mostly found as terminal residues in glycan structures of glycoconjugates including both glycoproteins and glycolipids. The highest levels of sialic acids are expressed in the brain where they regulate neuronal sprouting and plasticity, axon myelination and myelin stability, as well as remodeling of mature neuronal connections. Moreover, sialic acids are the sole ligands for microglial Siglecs (sialic acid-binding immunoglobulin-type lectins), and sialic acid-Siglec interactions have been indicated to play a critical role in the regulation of microglial homeostasis in a healthy brain. The recent discovery of CD33, a microglial Siglec, as a novel genetic risk factor for late-onset Alzheimer’s disease (AD), highlights the potential role of sialic acids in the development of microglial dysfunction and neuroinflammation in AD. Apart from microglia, sialic acids have been found to be involved in several other major changes associated with AD. Elevated levels of serum sialic acids have been reported in AD patients. Alterations in ganglioside (major sialic acid carrier) metabolism have been demonstrated as an aggravating factor in the formation of amyloid pathology in AD. Polysialic acids are linear homopolymers of sialic acids and have been implicated to be an important regulator of neurogenesis that contributes to neuronal repair and recovery from neurodegeneration such as in AD. In summary, this article reviews current understanding of neural functions of sialic acids and alterations of sialometabolism in aging and AD brains. Furthermore, we discuss the possibility of looking at sialic acids as a promising novel therapeutic target for AD intervention.


2020 ◽  
Vol 21 (22) ◽  
pp. 8593
Author(s):  
Yi Yang ◽  
Ryo Murai ◽  
Yuka Takahashi ◽  
Airi Mori ◽  
Masaya Hane ◽  
...  

Polysialic acid (polySia/PSA) is a linear homopolymer of sialic acid (Sia) that primarily modifies the neural cell adhesion molecule (NCAM) in mammalian brains. PolySia-NCAM not only displays an anti-adhesive function due to the hydration effect, but also possesses a molecule-retaining function via a direct binding to neurologically active molecules. The quality and quantity of polySia determine the function of polySia-NCAM and are considered to be profoundly related to the maintenance of normal brain functions. In this study, to compare the structures of polySia-NCAM in brains of five different vertebrates (mammals, birds, reptiles, amphibians, and fish), we adopted newly developed combinational methods for the analyses. The results revealed that the structural features of polySia considerably varied among different species. Interestingly, mice, as a mammal, possess eminently distinct types of polySia, in both quality and quantity, compared with those possessed by other animals. Thus, the mouse polySia is of larger quantities, of longer and more diverse chain lengths, and of a larger molecular size with higher negative charge, compared with polySia of other species. These properties might enable more advanced brain function. Additionally, it is suggested that the polySia/Sia ratio, which likely reflects the complexity of brain function, can be used as a new promising index to evaluate the intelligence of different vertebrate brains.


2020 ◽  
Vol 56 (85) ◽  
pp. 12981-12984
Author(s):  
Ryousuke Koinuma ◽  
Kazuki Tohda ◽  
Taku Aoyagi ◽  
Hiroshi Tanaka

Modification of a sialic acid with just carbonyl protecting groups opened the door to a chemical synthesis of polysialic acids.


Glycobiology ◽  
2017 ◽  
Vol 27 (9) ◽  
pp. 834-846 ◽  
Author(s):  
Airi Mori ◽  
Masaya Hane ◽  
Yuki Niimi ◽  
Ken Kitajima ◽  
Chihiro Sato
Keyword(s):  

Acta Naturae ◽  
2015 ◽  
Vol 7 (4) ◽  
pp. 136-141 ◽  
Author(s):  
S. S. Terekhov ◽  
I. V. Smirnov ◽  
O. G. Shamborant ◽  
T. V. Bobik ◽  
D. G. Ilyushin ◽  
...  

Organophosphate toxins (OPs) are the most toxic low-molecular compounds. The extremely potent toxicity of OPs is determined by their specificity toward the nerve system. Human butyrylcholinesterase (hBChE) is a natural bioscavenger against a broad spectrum of OPs, which makes it a promising candidate for the development of DNA-encoded bioscavengers. The high values of the protective index observed for recombinant hBChE (rhBChE) make it appropriate for therapy against OP poisoning, especially in the case of highly toxic warfare nerve agents. Nevertheless, large-scale application of biopharmaceuticals based on hBChE is restricted due to its high cost and extremely rapid elimination from the bloodstream. In the present study, we examine two approaches for long-acting rhBChE production: I) chemical polysialylation and II) in-vivo tetramerization. We demonstrate that both approaches significantly improve the pharmacokinetic characteristics of rhBChE (more than 5 and 10 times, respectively), which makes it possible to use rhBChE conjugated with polysialic acids (rhBChE-CAO) and tetrameric rhBChE (4rhBChE) in the treatment of OP poisonings.


Sign in / Sign up

Export Citation Format

Share Document