scholarly journals Asphalt Binder Modification with Plastomeric Compounds Containing Recycled Plastics and Graphene

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 516
Author(s):  
Simone D’Angelo ◽  
Gilda Ferrotti ◽  
Fabrizio Cardone ◽  
Francesco Canestrari

Polymer-modified bitumens are usually employed for enhancing the mixture performance against typical pavement distresses. This paper presents an experimental investigation of bitumens added with two plastomeric compounds, containing recycled plastics and graphene, typically used for asphalt concrete dry modification. The goal was to study the effects of the compounds on the rheological response of the binder phase, as well the adhesion properties, in comparison with a reference plain bitumen. The blends (combination of bitumen and compounds) were evaluated through dynamic viscosity tests, frequency sweep tests, and multiple stress creep recovery (MSCR) tests. Moreover, the bitumen bond strength (BBS) test was performed to investigate the behavior of the systems consisting of blends and aggregate substrates (virgin and pre-coated). The rheological tests indicated that both blends performed better than the plain bitumen, especially at high temperature, showing an enhanced rutting resistance. In terms of bond strength, comparable results were found between the blends and reference bitumen. Moreover, no performance differences were detected between the two types of blends.

2019 ◽  
Vol 276 ◽  
pp. 03004
Author(s):  
Gabriel Skronka ◽  
Martin Jasso ◽  
Otakar Vacin

The sustainable use of non-renewable natural resources, such as asphalt binder, can be achieved by adequate planning. The proper assessment of asphalt binders is a prerequisite to the appropriate designing of road constructions that can eventually result in pavements in which the development of pavement distresses can be mitigated. Rutting is the most common distress occurring at high temperatures, which is frequently experienced by such countries as Indonesia; thus, the use of adequate asphalt binder in hot mix asphalt pavements results in long-lasting road constructions. By means of advanced techniques, e.g., multiple stress creep recovery test, conducted on a dynamic shear rheometer, it is possible to determine the rutting potential of asphalt binders. This technique, however, still seems to be imprecise at currently determined shear stress values. This paper aims to investigate on the example of ten different asphalt binders, if creep and recovery measured at higher shear stresses result in better correlation with rutting potential of hot mix asphalts than that at the standardized stress levels. Concurrently, other conventional asphalt binder properties (e.g., penetration, softening point, elastic recovery) are determined and compared with rutting.


Author(s):  
Weidong Huang ◽  
Lu Zhou

Moisture damage is a prominent problem of asphalt pavements. The bond strength between asphalt and aggregates is a crucial factor that influences the capability of asphalt to resist moisture-induced damage. In this study, a binder bond strength (BBS) test was conducted to evaluate the effects of various modifiers and additives of different amounts on bond strength between asphalt and aggregates. Furthermore, the influence of styrene–butadiene–styrene (SBS) on adhesion behavior of asphalt binder was investigated through a gel permeation chromatography (GPC) test. Finally, the results of the BBS test were compared with the findings obtained from a Hamburg wheel-tracking device (HWTD) test, which reflected the moisture sensitivity of mixtures under wet conditions. Results indicated that gilsonite, high-density polyethylene, and polyphosphoric acid improved the bond strength of the base asphalt; SBS had no positive effects on asphalt adhesion properties; and SBS at a low amount reduced the bond strength. Ethylene bis-stearamide wax, crumb rubber, terminal blend (TB) rubber powder, and compound modifier TB rubber powder plus SBS decreased the bond strength. The GPC test results showed that SBS possibly did not actively contribute to the formation of bond strength between asphalt and aggregates. Test data for BBS and HWTD tests under wet conditions confirmed that there was no discernible correlation between these two tests when adhesion properties of modified asphalts were evaluated. However, the results of the BBS test were in accordance with those of the HWTD test when the adhesion of asphalt with different amounts of the same modifier and the mixture resistance to water damage were evaluated.


2021 ◽  
Vol 13 (16) ◽  
pp. 9319
Author(s):  
Hyun Hwan Kim ◽  
Mithil Mazumder ◽  
Moon-Sup Lee ◽  
Soon-Jae Lee

The crumb rubber modified (CRM) binder was evaluated considering the general operating temperatures of high, intermediate, and low temperatures. CRM binders were produced with four different contents (0, 5, 10, and 15%) using the base asphalt binder (PG64-22). Then, they were artificially aged by a rolling thin-film oven (RTFO) and pressure aging vessel (PAV). Superpave binder tests using a rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR) was applied to characterize the performance of the original and aged binders. Multiple stress creep recovery (MSCR) tests were also performed for deeper rutting characterization. The results of this study are as follows: (1) the presence of PR increases the binder viscosity, (2) the integration of CRM greatly improved the rutting resistance of the binder, and it was found that PR also improved the rutting characteristics, and (3) it is observed that PR is detrimental to the cracking properties of CRM binders.


2020 ◽  
Vol 12 (23) ◽  
pp. 10057
Author(s):  
Hyun Hwan Kim ◽  
Mithil Mazumder ◽  
Soon-Jae Lee ◽  
Moon-Sup Lee

In this study, thermoplastic polyurethane (TPU) and styrene-isoprene-styrene (SIS) were utilized to enhance asphalt binder properties. Superpave asphalt binder tests and multiple stress creep recovery (MSCR) were conducted to evaluate the physical and rheological performance (viscosity, rutting, and cracking properties) of the asphalt binders before and after short-term aging and after the long-term aging process. The results showed that (i) TPU has a positive effect on workability, including the mixing and compaction processes, which was evident from the reduced binder viscosity; (ii) asphalt binders with TPU and SIS showed better rutting resistance compared to the SIS binders without TPU; (iii) the cracking resistance of asphalt binders was found to be improved significantly with the addition of TPU; and (iv) TPU has the potential to be considered as a sustainable polymer modifier for producing bearable asphalt binders by improving rutting and crack resistance without increasing the melting temperature of the asphalt binders.


Author(s):  
Biruk Tadele ◽  
Emer T Quezon

Engineers have been using modified binders to improve the quality of flexible pavements. The use of waste material is one of the solutions taken in this direction. It is for this ground that the studies emphasis on the evaluation of waste engine oil as a modifier for asphalt binder as a pavement material. In the study uses four samples extracted from 80/100 penetration grade bitumen. From four sample first sample was checked for weather requirements of asphalt binder meet or not and the three were modified with different content of engine oil (3,6 and 9%). The behaviors of both unmodified and modified binder were checked for rheological properties. Dynamic shear rheometer (DSR) was used to determine high temperature performance grade (PG) and multiple stress creep recovery tests to determine rutting resistance properties of the binder. PG analysis indicates that both aged and un-aged 3% and 6% modified binder have similar higher PG grade with the unmodified one and 9% modified to have lower PG vale. Jnr3.2 value of modified asphalt binder is lower than unmodified binder indicating that modification had improved the rutting resistance and design traffic load (ESALS). The study shows that it is possible to use waste engine oil-modified binder as a pavement material.


TRANSPORTES ◽  
2020 ◽  
Vol 28 (2) ◽  
pp. 76-86
Author(s):  
Luis Miguel Gutierrez Klinsky ◽  
Vivian Silveira dos Santos Bardini ◽  
Valeria Cristina De Faria

This study used the Multiple Stress Creep Recovery Test (MSCR) and the Flow number test to analyze the characteristics of asphalt rubber and its use in hot mix asphalt (HMA) regarding to their ability to withstand permanent deformation. MSCR tests were done in three commercial asphalt rubber and in the traditional asphalt binder 50/70. Flow number tests were performed in twenty four specimens of asphalt rubber mixtures and eight specimens of conventional asphalt mixtures. The results of these tests showed that all the asphalt rubber samples had lower compliance values (Jnr) in the MSCR test, which denotes that these modified binders improved the rutting resistance of HMA. This behavior was confirmed with flow number results, since the HMA produced with asphalt rubber had always higher flow number values, when compared to the conventional asphalt mixtures. The analysis of the data showed excellent correlation between Jnr values and FN values.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2152
Author(s):  
Iran Rocha Segundo ◽  
Salmon Landi ◽  
Alexandros Margaritis ◽  
Georgios Pipintakos ◽  
Elisabete Freitas ◽  
...  

Transparent binder is used to substitute conventional black asphalt binder and to provide light-colored pavements, whereas nano-TiO2 has the potential to promote photocatalytic and self-cleaning properties. Together, these materials provide multifunction effects and benefits when the pavement is submitted to high solar irradiation. This paper analyzes the physicochemical and rheological properties of a transparent binder modified with 0.5%, 3.0%, 6.0%, and 10.0% nano-TiO2 and compares it to the transparent base binder and conventional and polymer modified binders (PMB) without nano-TiO2. Their penetration, softening point, dynamic viscosity, master curve, black diagram, Linear Amplitude Sweep (LAS), Multiple Stress Creep Recovery (MSCR), and Fourier Transform Infrared Spectroscopy (FTIR) were obtained. The transparent binders (base and modified) seem to be workable considering their viscosity, and exhibited values between the conventional binder and PMB with respect to rutting resistance, penetration, and softening point. They showed similar behavior to the PMB, demonstrating signs of polymer modification. The addition of TiO2 seemed to reduce fatigue life, except for the 0.5% content. Nevertheless, its addition in high contents increased the rutting resistance. The TiO2 modification seems to have little effect on the chemical functional indices. The best percentage of TiO2 was 0.5%, with respect to fatigue, and 10.0% with respect to permanent deformation.


Sign in / Sign up

Export Citation Format

Share Document