scholarly journals Conjugate heat transfer in the mode of thermal gravitational-capillary convection in the model of a fuel tank, after a sudden heating of the sidewall

2021 ◽  
Vol 2119 (1) ◽  
pp. 012164
Author(s):  
K. A. Mitin ◽  
V. S. Berdnikov ◽  
N. I. Bodneva ◽  
V. O. Ryabov

Abstract The evolution of unsteady gravitational-capillary convection in a layer of ethyl alcohol with a free surface after sudden electric heating of one of the vertical walls of a rectangular cavity was investigated numerically. The effect of the incoming flow of hot liquid on the time evolution of the temperature field on the opposite thin metal wall of the cavity was investigated. The calculations were carried out by the finite element method in the conjugate two-dimensional formulation with the Prandtl number Pr = 16, and the range of Grashof numbers determined by the heat flux density, 33·103 ≤ Gr ≤ 28·106. It is shown that the maximum local temperature gradients occur on the wall near the liquid-gas interface.

Author(s):  
Long-gang Liu ◽  
Chun-wei Gu ◽  
Xiao-dong Ren

Convective cooling channels are applied in a two-dimensional compressor vane to use the intercooling method to improve the efficiency of Brayton cycle and reduce the temperature of the vane. In this paper, we analyze the effect of coolant to the aerodynamic performance and heat transfer performance of the main stream and the vane. For the case of a two-dimensional compressor vane NACA65-(12A2I8b)10, the vane which has five convective cooling channels has been numerically simulated in different test conditions by discontinuous Galerkin (DG) method. The coolant is supercritical carbon dioxide whose pressure is 10MPa. Conjugate heat transfer method has been used in this paper. The numerical simulation result is similar to the experiment data and has been compared with the result of the vane without cooling channels to prove the effect of cooling channels. Cooling channels have large effect on the distribution of temperature and heat transfer coefficient. In addition, the relationship between Nu and Re on the fluid-solid interface has been analyzed and a suitable empirical equation has been obtained. This work analyzes the effect of intercooling system in the compressor and give several advice on future engineering applications in aero engines and gas turbines.


1984 ◽  
Vol 106 (3) ◽  
pp. 613-619 ◽  
Author(s):  
M. M. Razzaque ◽  
J. R. Howell ◽  
D. E. Klein

A numerical solution of the exact equations of coupled radiative/conductive heat transfer and temperature distribution inside a medium, and of the heat flux distribution at all the gray walls of a two-dimensional rectangular enclosure with the medium having uniform absorbing/emitting properties, using the finite element method, is presented. The medium can also have distributed energy sources. Comparison is made to the results of the P-3 approximation method.


1989 ◽  
Vol 111 (1) ◽  
pp. 41-45 ◽  
Author(s):  
A. Zebib ◽  
Y. K. Wo

Thermal analysis of forced air cooling of an electronic component is modeled as a two-dimensional conjugate heat transfer problem. The velocity field in a constricted channel is first computed. Then, for a typical electronic module, the energy equation is solved with allowance for discontinuities in the thermal conductivity. Variation of the maximum temperature with the average air velocity is presented. The importance of our approach in evaluating possible benefits due to changes in component design and the limitations of the two-dimensional model are discussed.


1993 ◽  
Vol 18 ◽  
pp. 161-165 ◽  
Author(s):  
M.R. Albert

Preliminary estimates of the thermal signature of ventilation in polar firn are obtained from two-dimensional numerical calculations. The simulations show that spatially varying surface pressure can induce airflow velocities of 10−5m s−1at 1.5 m depth in uniform firn, and higher velocities closer to the surface. The two-dimensional heat-transfer results generally agree with our earlier one-dimensional conclusions that the thermal effects of ventilation tend to decrease the temperature gradient in the top portions of the pack. Field observations of ventilation through temperature measurements are most likely to be observed when the firn temperature at depths on the order of 10 m is close to the air temperature, since steep temperature gradients can mask the thermal effects of ventilation. Preliminary indications are that, as long as surface-pressure amplitude is sufficient to move the air about in the top tens of centimeters in the snow, the resulting temperature profile during ventilation is fairly insensitive to the frequency of the surface-pressure forcing for pressure frequencies in the range 0.1–10.0 Hz.


2002 ◽  
Vol 23 (3) ◽  
pp. 340-345 ◽  
Author(s):  
G. Iaccarino ◽  
A. Ooi ◽  
P.A. Durbin ◽  
M. Behnia

Author(s):  
A. Ramiar ◽  
A. A. Ranjbar

Laminar two dimensional forced convective heat transfer of Al2O3–water nanofluid in a horizontal microchannel has been studied numerically, considering axial conduction, viscous dissipation and variable properties effects. The existing criteria in the literature for considering viscous dissipation in energy equation are compared for different cases and the most proper one is applied for the rest of the paper. The results showed that nanoparticles enhance heat transfer characteristics of the channel and inversely, viscous dissipation causes the Nusselt number and friction factor to decrease. The viscous dissipation effect may be emphasized by increasing Reynolds number and decreased by raising the exerted heat flux. Also, it was found that there is a critical Reynolds number below which the average Nusselt number of the nanofluid changes abnormally with Reynolds number as a result of variable properties effect.


Author(s):  
Anthony J. Hanford ◽  
Dennis E. Wilson

A phenomenological model is proposed which relates the effects of freestream turbulence to the increase in stagnation point heat transfer. The model requires both turbulence intensity and energy spectra as inputs to the unsteady velocity at the edge of the boundary layer. The form of the edge velocity contains both a pulsation of the incoming flow and an oscillation of the streamlines. The incompressible unsteady and time-averaged boundary layer response is determined by solving the momentum and energy equations. The model allows for arbitrary two-dimensional geometry, however, results are given only for a circular cylinder. The time-averaged Nusselt number is determined theoretically and compared to existing experimental data.


2000 ◽  
Author(s):  
M. Collins ◽  
S. J. Harrison ◽  
P. H. Oosthuizen ◽  
D. Naylor

Abstract The present numerical study examines the influence of heated, horizontal, and rotateable louvers on the convective and radiative heat transfer from a hot or cold vertical isothermal surface. The system models absorption of solar energy in a Venetian blind adjacent to the indoor surface of a window. Building on previous analyses, a steady, laminar, two-dimensional, conjugate conduction / convection / radiation model of this problem has been developed, and solutions have been obtained using the finite element method. Validation of the model against existing solutions has been undertaken. Results were obtained for two window temperatures (warm and cool compared to ambient), two louver to plate spacings, and three louver angles. The results clearly demonstrate the effect of the model variables on heat transfer from the plate surface. With few exceptions, steady periodicity along the plate was clearly demonstrated. More importantly, increased independence of the results from the louver angle as louver to plate distance increased was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document