scholarly journals A Novel Homozygous Missense Mutation of WEE2 Causes Female Infertility Characterized by Fertilization Failure

Author(s):  
Wenwen Liu ◽  
Guijun Yan ◽  
Ningyuan Zhang ◽  
Na Kong ◽  
Min Wu ◽  
...  

Abstract Purpose: To investigate the genetic cause of infertility in a female patient due to repeated fertilization failure.Methods: Whole exome sequencing was performed to obtain the candidate mutation. Sanger sequencing was used to identify the mutation of the proband and other family members. SIFT, Polyphen-2, and Mutation Taster were used to predict the pathogenicity of mutations. The online software Arpeggio and the mCSM online service were used to analyze the effect of the mutation on protein structure and stability. Results: We identified a novel homozygous missense mutation c.T1199A:p.L400Q (Leu400Gln) in WEE2 gene in a female proband with infertility caused by fertilization failure. Conclusions: We discovered a novel homozygous missense mutation c.T1199A:p.L400Q (Leu400Gln) of the WEE2 gene in an infertile female whose oocytes had undergone complete fertilization failure, either after ICSI or RICSI. Our findings extend the mutant spectrum of WEE2 , a genetic cause for fertilization failure, and provide a theoretical basis for clinical diagnosis of the pathogenic causes of infertility.

2019 ◽  
Vol 16 (8) ◽  
pp. 764-769 ◽  
Author(s):  
Huayuan Wang ◽  
Ruihua Sun ◽  
Yingying Shi ◽  
Mingrong Xia ◽  
Jing Zhao ◽  
...  

Background: The rate of occurrence of Alzheimer’s disease is increasing around the world. However, there is still no significant breakthrough in the study of its etiology and pathogenesis. Objective: To screen Alzheimer's disease pathogenic genes, which may be conducive to the elucidation of the pathogenic mechanisms of Alzheimer's disease And predict the pathogenicity by various computer software. Method: Clinical and neuroimaging examination, Whole Exome Sequencing, and Sanger sequencing were performed in the proband. Mutation sites were verified in 158 subjects. Results: We reported a proband carrying a probably novel pathogenic mutation, which clinically manifests as progressive memory loss, visual-spatial disorders, apraxia, psychobehavioral disorders, and temperamental and personality changes. Whole Exome Sequencing detected a novel missense mutation at codon 222 (Q222L), which is a heterozygous A to T point mutation at position 665 (c.665A>T) in exon 5 of the presenilin 1 leading to a glutamine-to-leucine substitution. The mutation was also identified by Sanger sequencing in one family member; nevertheless, it was not detected in the other 7 unaffected family members, 50 sporadic Alzheimer's disease patients and 100 control subjects. Conclusion: A novel mutation in exon 5 of the presenilin 1 gene (Gln222Leu) in a Chinese family with early-onset Alzheimer’s disease has been reported, besides, it was predicted that the missense mutation was probably a novel pathogenic mutation that was reported for the first time in a Chinese family with early-onset Alzheimer’s disease.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1230
Author(s):  
Ching-Ming Lin ◽  
Jay-How Yang ◽  
Hwei-Jen Lee ◽  
Yu-Pang Lin ◽  
Li-Ping Tsai ◽  
...  

Background: Cockayne syndrome (CS) is a rare form of dwarfism that is characterized by progressive premature aging. CS is typically caused by mutations in the excision repair cross-complementing protein group 6 (ERCC6) gene that encodes the CS group B (CSB) protein. Using whole exome sequencing, we recently identified a novel homozygous missense mutation (Leu536Trp) in CSB in a Taiwanese boy with CS. Since the current database (Varsome) interprets this variant as likely pathogenic, we utilized a bioinformatic tool to investigate the impact of Leu536Trp as well as two other variants (Arg453Ter, Asp532Gly) in similar articles on the CSB protein structure stability. Methods: We used iterative threading assembly refinement (I-TASSER) to generate a predictive 3D structure of CSB. We calculated the change of mutation energy after residues substitution on the protein stability using I-TASSER as well as the artificial intelligence program Alphafold. Results: The Asp532Gly variant destabilized both modeled structures, while the Leu536Trp variant showed no effect on I-TASSER’s model but destabilized the Alphafold’s modeled structure. Conclusions: We propose here the first case of CS associated with a novel homozygous missense mutation (Leu536Trp) in CSB. Furthermore, we suggest that the Asp532Gly and Leu536Trp variants are both pathogenic after bioinformatic analysis of protein stability.


2020 ◽  
Vol 13 (10) ◽  
pp. e235520
Author(s):  
Naveen Parkash Gupta ◽  
Anil Batra ◽  
Ratna Puri ◽  
Varun Meena

The term baby presented with respiratory distress with X-ray pictures consistent as hyaline membrane disease (HMD). Baby was ventilated and treated with surfactant. Because of the persistence of high ventilation needs with X-ray pictures consistent with HMD with a transient response to surfactant every time, the possibility of an inherited disorder of surfactant metabolism was kept. Whole-exome sequencing revealed a novel homozygous missense mutation in the gene for ATP binding cassette transporter protein A3. The baby died after 100 days of ventilation.


2021 ◽  
Author(s):  
Zhi-Bo Lin ◽  
Jin Li ◽  
Hai-Sen Sun ◽  
A-Yong Yu ◽  
Shi-Hao Chen ◽  
...  

Abstract Background: Congenital cataract-microcornea syndrome (CCMC) is characterized by the association of congenital cataract and microcornea without any other systemic anomaly or dysmorphism. Although several causative genes have been reported in patients with CCMC, the genetic etiology of CCMC is yet to be clearly understood. Purpose: To unravel the genetic cause of autosomal dominant family with CCMC.Methods: All patients and available family members underwent a comprehensive ophthalmologic clinical examination in the hospital by expert ophthalmologists and carried out to clinically diagnosis. All the patients were screened by whole-exome sequencing and then validated using co-segregation by Sanger sequencing. Results: Four CCMC patients from a Chinese family, and five unaffected family members were enrolled in this study. Using whole-exome sequencing, missense mutation c.295G>T (p.a99s, NM_003106.4) in the SOX2 gene was identified and validated by segregation analysis. In addition, this missense mutation was predicted to be damaging by multiple predictive tools. Variant p.Ala99Ser was located in a conservation high mobility group (HMG)-box domain in SOX2 protein, with a potential pathogenic impact of p.Ala99Ser on protein level.Conclusions: A novel missense mutation (c.295G>T, p.Ala99Ser) in the SOX2 gene was found in this Han Chinese family with congenital cataract and microcornea. Our study firstly determined that mutations in SOX2 were associated with CCMC, warranting further investigations on the pathogenesis of this disorder. This result expands the mutation spectrum of SOX2 and provides useful information to study the molecular pathogenesis of CCMC.


2020 ◽  
Vol 22 (10) ◽  
pp. 675-682 ◽  
Author(s):  
Jie Yin ◽  
Zhongping Qin ◽  
Kai Wu ◽  
Yufei Zhu ◽  
Landian Hu ◽  
...  

Backgrounds and Objective: Blue rubber bleb nevus syndrome (BRBN) or Bean syndrome is a rare Venous Malformation (VM)-associated disorder, which mostly affects the skin and gastrointestinal tract in early childhood. Somatic mutations in TEK have been identified from BRBN patients; however, the etiology of TEK mutation-negative patients of BRBN need further investigation. Method: Two unrelated sporadic BRBNs and one sporadic VM were firstly screened for any rare nonsilent mutation in TEK by Sanger sequencing and subsequently applied to whole-exome sequencing to identify underlying disease causative variants. Overexpression assay and immunoblotting were used to evaluate the functional effect of the candidate disease causative variants. Results: In the VM case, we identified the known causative somatic mutation in the TEK gene c.2740C>T (p.Leu914Phe). In the BRBN patients, we identified two rare germline variants in GLMN gene c.761C>G (p.Pro254Arg) and c.1630G>T(p.Glu544*). The GLMN-P254R-expressing and GLMN-E544X-expressing HUVECs exhibited increased phosphorylation of mTOR-Ser-2448 in comparison with GLMN-WTexpressing HUVECs in vitro. Conclusion: Our results demonstrated that rare germline variants in GLMN might contribute to the pathogenesis of BRBN. Moreover, abnormal mTOR signaling might be the pathogenesis mechanism underlying the dysfunction of GLMN protein.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Xu ◽  
Yong-Biao Zhang ◽  
Li-Jun Liang ◽  
Jia-Li Tian ◽  
Jin-Ming Lin ◽  
...  

Abstract Background Hereditary hemorrhagic telangiectasia (HHT) is a disease characterized by arteriovenous malformations in the skin and mucous membranes. We enrolled a large pedigree comprising 32 living members, and screened for mutations responsible for HHT. Methods We performed whole-exome sequencing to identify novel mutations in the pedigree after excluding three previously reported HHT-related genes using Sanger sequencing. We then performed in silico functional analysis of candidate mutations that were obtained using a variant filtering strategy to identify mutations responsible for HHT. Results After screening the HHT-related genes, activin A receptor-like type 1 (ACVRL1), endoglin (ENG), and SMAD family member 4 (SMAD4), we did not detect any co-segregated mutations in this pedigree. Whole-exome sequencing analysis of 7 members and Sanger sequencing analysis of 16 additional members identified a mutation (c.784A > G) in the NSF attachment protein gamma (NAPG) gene that co-segregated with the disease. Functional prediction showed that the mutation was deleterious and might change the conformational stability of the NAPG protein. Conclusions NAPG c.784A > G may potentially lead to HHT. These results expand the current understanding of the genetic contributions to HHT pathogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Helen Yan ◽  
Sherry X. Chen ◽  
Lauren Y. Cheng ◽  
Alyssa Y. Rodriguez ◽  
Rui Tang ◽  
...  

AbstractWhole exome sequencing (WES) is used to identify mutations in a patient’s tumor DNA that are predictive of tumor behavior, including the likelihood of response or resistance to cancer therapy. WES has a mutation limit of detection (LoD) at variant allele frequencies (VAF) of 5%. Putative mutations called at ≤ 5% VAF are frequently due to sequencing errors, therefore reporting these subclonal mutations incurs risk of significant false positives. Here we performed ~ 1000 × WES on fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue biopsy samples from a non-small cell lung cancer patient, and identified 226 putative mutations at between 0.5 and 5% VAF. Each variant was then tested using NuProbe NGSure, to confirm the original WES calls. NGSure utilizes Blocker Displacement Amplification to first enrich the allelic fraction of the mutation and then uses Sanger sequencing to determine mutation identity. Results showed that 52% of the 226 (117) putative variants were disconfirmed, among which 2% (5) putative variants were found to be misidentified in WES. In the 66 cancer-related variants, the disconfirmed rate was 82% (54/66). This data demonstrates Blocker Displacement Amplification allelic enrichment coupled with Sanger sequencing can be used to confirm putative mutations ≤ 5% VAF. By implementing this method, next-generation sequencing can reliably report low-level variants at a high sensitivity, without the cost of high sequencing depth.


Sign in / Sign up

Export Citation Format

Share Document