Evidence for widespread oil migration in the 1.88 Ga Gunflint Formation, Ontario, Canada

Geology ◽  
2019 ◽  
Vol 47 (10) ◽  
pp. 899-903
Author(s):  
Birger Rasmussen ◽  
Janet R. Muhling

Abstract The abundance of Precambrian organic-rich shales, heated beyond the oil and gas window, requires that enormous volumes of hydrocarbons were generated and transported through the ancient crust. However, the former passage of fluid hydrocarbons rarely leaves a trace, so evidence for this process in the early Precambrian rock record is sparse. Here, we report the widespread presence of solidified oil (pyrobitumen) in the iron formation of the 1.88 Ga Gunflint Formation, Ontario, Canada. Petrographic textures indicate at least two phases of oil migration, an early phase marked by pyrobitumen in granules and intergranular pores, synchronous with synsedimentary silica cementation, and a later phase restricted to crosscutting fractures. The paragenetic relationships between the pyrobitumen and iron oxides indicate that oil migration commenced before hematite and some magnetite growth. Our evidence for early oil migration can be explained by petroleum generation during the 1.86–1.80 Ga Penokean orogeny, expelling hydrocarbons generated in the core of the fold-and-thrust belt outwards and updip through the sediments of the Gunflint Formation.

2021 ◽  
Author(s):  
Brian Chin ◽  
Safdar Ali ◽  
Ashish Mathur ◽  
Colton Barnes ◽  
William Von Gonten

Abstract A big challenge in tight conventional and unconventional rock systems is the lack of representative reservoir deliverability models for movement of water, oil and gas through micro-pore and nano-pore networks. Relative permeability is a key input in modelling these rocks; but due to limitations in core analysis techniques, permeability has become a knob or tuning parameter in reservoir simulation. Current relative permeability measurements on conventional core samples rely on density contrast between oil/water or gas/water on CT (Computed Tomography) scans and recording of effluent volumes to determine relative fluid saturations during the core flooding process. However, tight rocks are characterized by low porosities (< 10 %) and ultra-low permeabilities (< 1 micro-Darcy), that make effective and relative permeability measurements very difficult, time-consuming, and prone to high errors associated with low pore volumes and flow rates. Nuclear Magnetic Resonance (NMR) measurements have been used extensively in the industry to measure fluid porosities, pore size characterization, wettability evaluation, etc. Core NMR scans can provide accurate quantification of pore fluids (oil, gas, water) even in very small quantities, using T2, T1T2 and D-T2 activation sequences. We have developed a novel process to perform experiments that measure effective and relative permeability values on both conventional and tight reservoirs at reservoir conditions while accurately monitoring fluid saturations and fluid fronts in a 12 MHz 3D gradient NMR spectrometer. The experimental process starts by acquiring Micro-CT scans of the cylindrical rock plugs to screen the samples for artifacts or microcracks that may affect permeability measurements. Once the samples are chosen, NMR T2 and T1T2 scans are performed to establish residual fluid saturations in the as-received state. If a liquid effective permeability test is required, the samples are then saturated with the given liquid through a combination of humidification, vacuum-assisted spontaneous imbibition, and saturation under pressure and temperature. After saturation, NMR scans are obtained to verify the volumes of the liquids and determine if the samples have achieved complete saturation. The sample is then loaded into a special core-flooding vessel that is invisible to the NMR spectrometer to minimize interference with the NMR signals from the fluids in the sample. The sample is brought up to reservoir stress and temperature, and the main flowing fluid is injected from one side of the sample while controlling the pressures on the other side of the sample with a back pressure regulator. The saturation front of the injected fluid is continuously monitored using 2D and 3D gradient NMR scans and the volumes of different fluids in the sample are measured using NMR T2 and T1T2 scans. The use of a 12 MHz NMR spectrometer provides very high SNR (signal-to-noise ratio); and clear distinction of water and hydrocarbon signals in the core plug during the entire process. The scanning times are also reduced by orders of magnitude, thereby allowing for more scans to properly capture the saturation front and changes in saturation. Simultaneously, the fluid flowrates and pressures are recorded in order to compute permeability values. The setup is rated to 10,000 psi confining pressures, 9000 psi of pore pressure and a working temperature of up to 100 C. Flowrates as low as 0.00001 cc/min can be recorded. These tests have been done with brine, dead and live crudes, and hydrocarbon gases. The measured relative permeability values have been used successfully in both simulation and production modelling studies in various reservoirs worldwide.


2013 ◽  
Vol 16 (4) ◽  
pp. 685-703 ◽  
Author(s):  
Peter Skoglund

This paper discusses the chronology of the Järrestad rock-art site in south-east Sweden. Drawing on recent developments in ship chronology, it argues that images were produced from the very beginning of the Scandinavian Bronze Age, c. 1700 BC, to the earliest Iron Age, c. 200 BC. The images are not randomly spread, however, but cluster in two phases: c. 1700–1100 BC and c. 900–200 BC, each with its different characteristics. It is argued that the later phase should be viewed against the background of central and western European Hallstatt cultures which affected not only the iconography of the Järrestad panel but also the organization of the surrounding cultural landscape.


1970 ◽  
Vol 35 (1) ◽  
pp. 62-73 ◽  
Author(s):  
David C. Grove

AbstractIn 1967, a mound at San Pablo, Morelos, was partially excavated for salvage reasons. The mound had at one time contained an estimated 150-250 burials, all associated with ceramics identical to certain vessels found at Tlatilco. In addition to being one of the earliest known mounds in central Mexico, the site is believed to be a burial mound, rare at any time period in Mesoamerica. Analysis of the burial ceramics in comparison to assemblages from other Middle Preclassic sites suggests that Tlatilco and other sites of its type are not one-period sites, but exhibit at least two phases, the earlier phase related to highland Olmec, the later to a localization of styles. The San Pablo Pantheon mound appears to represent only the later phase.


2021 ◽  
Vol 133 (2) ◽  
pp. 27-30
Author(s):  
D. A. Kobylinskiy ◽  

The work is devoted to the development of geochemical criteria for determining the nature of saturation for deep-adsorbed gases in the core. As the object of investigation used the core material selected in the fields in the Nadym-Pyrskoy oil and gas field. In each sample, 72 components were determined, namely, hydrocarbons of different material groups: normal, branched, polycyclic, and aromatic compounds from butane to dodecane. With respect to the quantitative distribution and correlation among the components, qualitative geochemical indicators of sediment productivity have been developed. The saturation character established by the criteria of deep-adsorbed gases was confirmed by the test results. In this regard, this research method significantly increases the effectiveness of diagnostics of prospective deposits, the application of which is relevant in the territory of the West Siberian oil and gas basin, especially when studying deep-submerged deposits of complex geological structure.


2014 ◽  
Vol 2 (12) ◽  
pp. 7507-7519
Author(s):  
M. Mucciarelli ◽  
F. Donda ◽  
G. Valensise

Abstract. While scientists are paying increasing attention to the seismicity potentially induced by hydrocarbon exploitation, little is known about the reverse problem, i.e. the impact of active faulting and earthquakes on hydrocarbon reservoirs. The recent 2012 earthquakes in Emilia, Italy, raised concerns among the public for being possibly human-induced, but also shed light on the possible use of gas wells as a marker of the seismogenic potential of an active fold-and-thrust belt. Based on the analysis of over 400 borehole datasets from wells drilled along the Ferrara-Romagna Arc, a large oil and gas reserve in the southeastern Po Plain, we found that the 2012 earthquakes occurred within a cluster of sterile wells surrounded by productive ones. Since the geology of the productive and sterile areas is quite similar, we suggest that past earthquakes caused the loss of all natural gas from the potential reservoirs lying above their causative faults. Our findings have two important practical implications: (1) they may allow major seismogenic zones to be identified in areas of sparse seismicity, and (2) suggest that gas should be stored in exploited reservoirs rather than in sterile hydrocarbon traps or aquifers as this is likely to reduce the hazard of triggering significant earthquakes.


2021 ◽  
Vol 6 (4) ◽  
pp. 12-21
Author(s):  
Olga S. Generalenko ◽  
Anastasia Y. Koltsun ◽  
Svetlana I. Isaeva ◽  
Sergey L. Tarasov ◽  
Vladimir A. Orlov

Introduction. The subject of the study of this work is the deposits of the anomalous section of the Bazhenov formation (ASB) of Western Siberia, the disturbed occurrence of which was recorded by 2D, 3D seismic exploration and borehole data at many fields of the Frolov oil and gas region. The research area unites the company’s assets in the KhMAO and the Tyumen region, which are part of the large hydrocarbon cluster “ZIMA”. Aim. In order to typify various complexes of rocks of the Bazhenov formation and further localization of deposits, a comprehensive core analysis, GIS and seismic studies were performed. Materials and methods. According to the results of lithological study of the core and petrophysical interpretation of logging diagrams, have been identified various types of rocks in the interval of the Bazhenov formation. According to the results of the interpretation of the seismic survey materials, contoured zones that differ in the wave pattern by different coherence of the axes of common phase. The revealed differences in seismic sections compared with borehole data and geological bodies mapped based on the obtained patterns. Results. Based on a comprehensive interpretation of the core, GIS and seismic studies, established the zonality of the distribution of various types of deposits of the Bazhenov formation, the relationship of the development of ASB zones with the introduction of Early Cretaceous sedimentary bodies and showed the introduction of detrital material from the overlying rocks. Conclusions. The authors of the article conclude that the development of anomalous sections of the Bazhenov formation involves several stages of the introduction of landslide bodies of overlying rocks, according to the gradation of Neocomian clinocyclites in the north-west direction. Within the study area, mapped three large landslide bodies in the Bazhenov formation interval, each of which was formed an internal zonality and because of the introduction of rocks from the overlying interval.


2021 ◽  
Vol 6 (4) ◽  
pp. 22-31
Author(s):  
Guzel R. Vahitova ◽  
Anzhela A. Kazaryan ◽  
Timur F. Khaybullin

Aim. Due to the depletion of reserves of the main oil and gas complexes, the greatest interest is attributed to hard-to-recover reserves, complex-built objects of the sedimentary cover, the development of which was unprofitable until recently. One of these is the oil-bearing complex of the Achimov deposits of the Malobalykskoye field in Western Siberia. This article is devoted to the facies analysis and typification of reservoir rocks of the Achimov deposits in order to increase the reliability of determining the boundaries of the reservoirs, their interpretation and assessment of the petrophysical properties of the reservoirs. At the same time, special attention is paid to the facies analysis, which determines the characteristics of the reservoir. The Achimov deposits are a promising source of increasing resources and maintaining production at a high level. With their increasing importance, there are problems that complicate the search and assessment of deposits. Such problems include a high degree of reservoir compartmentalization, sharp facies variability, complex pore space structure, high clay content, low permeability values, etc. Materials and methods. The work is based on a comprehensive interpretation of the data of the lithological description of the core, the results of laboratory studies of the core and well logging data analysis of the Achimov deposits of the Malobalykskoye field. The methods used in the interpretation of GIS data, statistical analysis, comparison. Due to the fact that the reservoir properties of sand bodies are determined by the peculiarities of their formation in different conditions of sedimentation, it is necessary to establish a relationship between the petrophysical characteristics of rocks and their facies nature by substantiating petrofacies models. The use of the latter in geological modeling makes it possible to more effectively predict the reservoir properties (reservoir properties) of various facies lithotypes. Results. The paper presents the results of facies analysis and typification of the reservoirs of the Achimov deposits of the Malobalykskoye field, on the basis of which the boundaries of the reservoirs and the effective oilsaturated thicknesses were refined. Conclusions. Based on the results of the study, it can be concluded that it is necessary to develop refined petrophysical models for reservoirs with complex geological structure that take into account the facies features of rocks.


Author(s):  
Ho Minh Kha ◽  
Nguyen Thanh Nam ◽  
Vo Tuyen ◽  
Nguyen Tan Ken

The gas-liquid cylindrical cyclone (GLCC) separators is a fairly new technology for the oil and gas industry. The current GLCC separator, a potential alternative for the conventional one, was studied, developed, and patented by Chevron company and Tulsa University (USA). It is used for replacing the traditional separators that have been used over the last 100 years. In addition, it is significantly attracted to petroleum companies in recent years because of the effect of the oil world price. However, the behavior of phases in the instrument is very rapid, complex, and unsteady, which may cause the difficulty of enhancing the performance of the separation phases. The multiple recent research shows that the inlet geometry is probably the most critical element that influences directly to the performance of separation of phases. Though, so far, most of the studies of GLCC separator were limited with the one inlet model. The main target of the current study is to deeply understand the effect of different geometrical configurations of the circular inlet on performances of GLCC by the experimental method for two phases flow (gas-liquid). Two different inlet configurations are constructed, namely: One circular inlet and two symmetric circular inlets. As a result, we propose the use of two symmetric circular inlets to enhance separator efficiency because of their effects.


2016 ◽  
Vol 53 (10) ◽  
pp. 1053-1072 ◽  
Author(s):  
Mohammed Hail Hakimi ◽  
Abdulghani F. Ahmed

Late Jurassic – Early Cretaceous shales of the Naifa, Safer, and Madbi formations were studied to evaluate source rock characterization. The results of the source rock were then incorporated into basin modeling to understand the timing of hydrocarbon (HC) generation and expulsion. The Late Jurassic – Early Cretaceous shales have low to high organic matter, with total organic carbon (TOC) values in the range of 0.50%–28.01%, indicating fair to excellent source rock potential. Main oil and gas are anticipated to be generated from the Naifa, Safer, and Lam shale samples with types I and (or) II and types II–III kerogens. In contrast, the Meem samples are dominated by type III kerogen (hydrogen index, HI < 200 mg HC / g TOC), and are thus considered to be gas prone. The Late Jurassic – Early Cretaceous shale samples have temperatures of maximum pyrolysis yield (Tmax) in the range of 337–515 °C, consistent with immature to post-mature stages. The Tmax data also indicate that the Safer and Madbi shale samples have sufficient thermal maturity, i.e., peak–mature oil and gas window. The basin models indicate that the Naifa Formation is early–mature, and the onset oil generation began during the Early Miocene. The models also indicate that the main phase of oil generation in the Safer source rock began during the Late Eocene. In contrast, the Madbi source rock units had passed the peak oil generation window, and the oil was converted to gas during the Late Cretaceous to Late Eocene. The modeled HC expulsion history reveals that most oils are contributed by both Madbi units, with significant amounts of gas originating from the Meem unit.


2014 ◽  
Vol 54 (2) ◽  
pp. 501
Author(s):  
Vikki Pink

How do major brownfield engineering, procurement, and construction (EPC) contractors manage their resources across a geographically dispersed market that is transitioning from the Greenfield mega-project era into operations? How do we manage seemingly unlimited opportunities with a finite in-country resource pool without compromising safety, quality and competitiveness? Contractors must demonstrate high levels of nimbleness and governance when it comes to accessing and deploying the right calibre, cost-effective resources. The mega-project era in Australia has seen unprecedented growth, but on a capital-project basis; brownfield contractors need to take the long view and structure their resourcing strategies accordingly. This means tapping into global networks of suitably experienced personnel, unblocking barriers to mobility, and developing sustainable development programs. Investment in and relentless focus on safety leadership through tailored development and competency programs is a must for any contractor that is serious about mobilising safely. When considering the cultural, behavioural, and competence contexts of diverse locations, leading contractors must come ready-armed with robust, proven tools managed by leadership personnel who are deeply intimate with these methods and the core values that underpin them. By taking direct ownership of resourcing through strategic, in-house capabilities with a global reach, a contractor can constantly monitor its talent pool and link this to its strategic opportunities. But even more critically, the contractor can provide assurance to clients and communities that the crews deployed to diverse worksites, such as Karratha, Bass Strait, and Papua New Guinea are completely fit for purpose and well suited to each environment.


Sign in / Sign up

Export Citation Format

Share Document