Effects of nozzle divergent part on waterjet erosion characteristics for jet-type cloud cavitation

2021 ◽  
Vol 2021.58 (0) ◽  
pp. F014
Author(s):  
Shota SUDANI ◽  
Yasuhiro SUGIMOTO ◽  
Keiichi SATO
2021 ◽  
Vol 9 (7) ◽  
pp. 742
Author(s):  
Minsheng Zhao ◽  
Decheng Wan ◽  
Yangyang Gao

The present work focuses on the comparison of the numerical simulation of sheet/cloud cavitation with the Reynolds Average Navier-Stokes and Large Eddy Simulation(RANS and LES) methods around NACA0012 hydrofoil in water flow. Three kinds of turbulence models—SST k-ω, modified SST k-ω, and Smagorinsky’s model—were used in this paper. The unstable sheet cavity and periodic shedding of the sheet/cloud cavitation were predicted, and the simulation results, namelycavitation shape, shedding frequency, and the lift and the drag coefficients of those three turbulence models, were analyzed and compared with each other. The numerical results above were basically in accordance with experimental ones. It was found that the modified SST k-ω and Smagorinsky turbulence models performed better in the aspects of cavitation shape, shedding frequency, and capturing the unsteady cavitation vortex cluster in the developing and shedding period of the cavitation at the cavitation number σ = 0.8. At a small angle of attack, the modified SST k-ω model was more accurate and practical than the other two models. However, at a large angle of attack, the Smagorinsky model of the LES method was able to give specific information in the cavitation flow field, which RANS method could not give. Further study showed that the vortex structure of the wing is the main cause of cavitation shedding.


2001 ◽  
Vol 123 (4) ◽  
pp. 850-856 ◽  
Author(s):  
Wei Gu ◽  
Yousheng He ◽  
Tianqun Hu

Hydroacoustics of the transcritical cavitating flows on a NACA16012 hydrofoil at a 2/5/8-degree angle of attack and axisymmetric bodies with hemispherical and 45-degree conical headforms were studied, and the process of cloud cavitation shedding was observed by means of high-speed cinegraphy. By expressing the cavitation noise with partial acoustic level, it is found that the development of cavitation noise varies correspondingly with cavitation patterns. The instability of cavitation is a result of cavity-flow interaction, and is mainly affected by the liquid flow rather than by the cavitation bubbles. A periodic flow structure with a large cavitation vortex is observed and found to be responsible for inducing the reentrant-jet and consequent cavitation shedding, and explains the mechanism of periodic cavitation shedding from a new viewpoint. New terms for the three stages, growing, hatching and breaking, are used to describe the process of cavity shedding.


Author(s):  
Angelo Cervone ◽  
Cristina Bramanti ◽  
Emilio Rapposelli ◽  
Luca d’Agostino

The aim of the present paper is to provide some highlights about the most interesting experimental activities carried out during the years 2000–2004 through the CPRTF (Cavitating Pump Rotordynamic Test Facility) at Centrospazio/Alta S.p.A. After a brief description of the facility, the experimental activities carried out on a NACA 0015 hydrofoil for the characterization of the pressure coefficient on the suction side and evaluation the cavity length and oscillations are presented. Then, the results obtained to characterize the performance and the cavitation instabilities on three different axial inducers are showed: in particular, a commercial three-bladed inducer, the four-bladed inducer installed in the LOX turbopump of the Ariane Vulcain MK1 rocket engine and the “FAST2”, a two-bladed one manufactured by Avio S.p.A. using the criteria followed for the VINCI180 LOX inducer. The most interesting results are related to the effects of the temperature on the cavitation instabilities on hydrofoils and inducers. Experiments showed that some instabilities, like the cloud cavitation on hydrofoils and the surge on inducers, are strongly affected by the temperature, while others seem not to be influenced by the thermal effects. In the final part of this paper, some indications of the main experimental activities scheduled for the next future are provided.


Author(s):  
Vedanth Srinivasan ◽  
Abraham J. Salazar ◽  
Kozo Saito

A new unsteady cavitation event tracking model is developed for predicting vapor dynamics occurring in multi-dimensional incompressible flows. The procedure solves incompressible Navier-Stokes equations for the liquid phase with an additional vapor transport equation for the vapor phase. The model tracks regions of liquid vaporization and applies compressibility effects to compute the local variation in speed of sound using the Homogeneous Equilibrium Model (HEM) assumptions. The variation of local cell density as a function of local pressure is used to construct the source term in the vapor fraction transport equation. The novel Cavitation-Induced-Momentum-Defect (CIMD) correction methodology developed in this study serves to account for cavitation inception and collapse events as relevant momentum source terms in the liquid phase momentum equations. Effects of vapor phase accumulation and diffusion are incorporated by detailed relaxation models. A modified RNG K-ε model, including the effects of compressibility in the vapor regions, is employed for modeling turbulence effects. Turbulent kinetic energy and dissipation contributions from the vapor regions are integrated with the liquid phase turbulence using relevant source terms. Numerical simulations are carried out using a Finite Volume methodology available within the framework of commercial CFD software code Fluent v.6.2. Simulation results are in qualitative agreement with experiments for unsteady cloud cavitation behavior in planar nozzle flows. Multitude of mechanisms such as formation of vortex cavities, vapor cluster shedding and coalescence, cavity pinch off are sharply captured by the supplemented vapor transport equation. Our results concur with previously established theories concerning sheet and cloud cavitation such as the re-entrant jet motion, cavity closure and the impact of adverse pressure gradients on cavitation dynamics.


2009 ◽  
Vol 50 ◽  
Author(s):  
John R Blake ◽  
Miles Wilson ◽  
Peter M Haese
Keyword(s):  

2020 ◽  
Vol 50 (2) ◽  
pp. 531-534
Author(s):  
Theodore S. Durland ◽  
J. Thomas Farrar

AbstractLonguet-Higgins in 1964 first pointed out that the Rossby wave energy flux as defined by the pressure work is not the same as that defined by the group velocity. The two definitions provide answers that differ by a nondivergent vector. Longuet-Higgins suggested that the problem arose from ambiguity in the definition of energy flux, which only impacts the energy equation through its divergence. Numerous authors have addressed this issue from various perspectives, and we offer one more approach that we feel is more succinct than previous ones, both mathematically and conceptually. We follow the work described by Cai and Huang in 2013 in concluding that there is no need to invoke the ambiguity offered by Longuet-Higgins. By working directly from the shallow-water equations (as opposed to the more involved quasigeostrophic treatment of Cai and Huang), we provide a concise derivation of the nondivergent pressure work and demonstrate that the two energy flux definitions are equivalent when only the divergent part of the pressure work is considered. The difference vector comes from the nondivergent part of the geostrophic pressure work, and the familiar westward component of the Rossby wave group velocity comes from the divergent part of the geostrophic pressure work. In a broadband wave field, the expression for energy flux in terms of a single group velocity is no longer meaningful, but the expression for energy flux in terms of the divergent pressure work is still valid.


1997 ◽  
Vol 64 (1-2) ◽  
pp. 61-82 ◽  
Author(s):  
P. L. Kulkarni ◽  
A. K. Mitra ◽  
S. G. Narkhedkar ◽  
A. K. Bohra ◽  
S. Rajamani

Author(s):  
Feng Hong ◽  
Jianping Yuan ◽  
Banglun Zhou ◽  
Zhong Li

Compared to non-cavitating flow, cavitating flow is much complex owing to the numerical difficulties caused by cavity generation and collapse. In the present work, cavitating flow around a two-dimensional Clark-Y hydrofoil is studied numerically with particular emphasis on understanding the cavitation structures and the shedding dynamics. A cavitation model, coupled with the mixture multi-phase approach, and the modified shear stress transport k-ω turbulence model has been developed and implemented in this study to calculate the pressure, velocity, and vapor volume fraction of the hydrofoil. The cavitation model has been implemented in ANSYS FLUENT platform. The hydrofoil has a fixed angle of attack of α = 8° with a Reynolds number of Re = 7.5 × 105. Simulations have been carried out for various cavitation numbers ranging from non-cavitating flows to the cloud cavitation regime. In particular, we compared the lift and drag coefficients, the cavitation dynamics, and the time-averaged velocity with available experimental data. The comparisons between the numerical and experimental results show that the present numerical method is capable to predict the formation, breakup, shedding, and collapse of the sheet/cloud cavity. The periodical formation, shedding, and collapse of sheet/cloud cavity lead to substantial increase in turbulent velocity fluctuations in the cavitation regimes around the hydrofoil and in the wake flow.


Sign in / Sign up

Export Citation Format

Share Document