scholarly journals Dry Bean (Phaseolus vulgaris L.) Crop Water Production Functions and Yield Response Factors in an Arid to Semi-Arid Climate

2022 ◽  
Vol 65 (1) ◽  
pp. 51-65
Author(s):  
Vivek Sharma ◽  
Abhijit Rai

HighlightsDeficit irrigation negatively affected dry bean yield and yield components.Excess irrigation increased crop ETc but not dry bean yield.Soil moisture fluctuation was greater in the top 0.3 m of the soil profile compared to deeper depths.Crop water production function had a slope of 18.9 kg ha-1 mm-1 and threshold crop evapotranspiration of 171 mm.Dry bean crop was found to be sensitive to water stress (yield response factor Ky = 1.94).Abstract. Under changing climate conditions and declining water resources, understanding crop response to water stress is critical for effective irrigation management. The objectives of this study were to quantify dry bean (Phaseolus vulgaris L., cv. Othello) soil moisture dynamics, crop evapotranspiration (ETc), and yield response factor and to develop dry bean irrigation and crop water production functions (IWPF and CWPF). Five irrigation treatments, i.e., full irrigation (FIT), 75% FIT, 50% FIT, 25% FIT, and 125% FIT, were evaluated using a randomized complete block design (RCBD) with three replications for three years (2017, 2018, and 2019) in the arid to semi-arid intermountain region of Powell, Wyoming. The results showed a significant influence of irrigation on dry bean soil moisture dynamics and ETc. The dry bean crop showed a greater soil moisture fluctuation in the top 0.3 m of the soil profile compared to 0.6 m and at 0.9 m. ETc ranged from 187 to 438 mm, from 190 to 409 mm, and from 217 to 398 mm in the 2017, 2018, and 2019 growing seasons, respectively. A positive two-segment relationship was observed between dry bean seed yield and cumulative irrigation water applied. The average cumulative seasonal irrigation of 310 mm resulted in maximum seed yield. For all three years, the seed yield increased linearly with ETc. Combining the data from the three years resulted in a CWPF with a slope of 18.9 kg ha-1 mm-1 and an offset of 171 mm of ETc (i.e., the ETc required for crop establishment before any seed yield is produced, or threshold ETc). Moreover, the dry bean crop was found to be sensitive to water stress (Ky = 1.94). These results indicated that under the typical semi-arid to arid climate conditions of the intermountain region of Wyoming, deficit irrigation of dry bean may not be a viable strategy because the yield loss outweighs water-saving benefits. Keywords: Dry bean, Crop evapotranspiration, Crop production function, Irrigation water production function.

1983 ◽  
Vol 34 (6) ◽  
pp. 661 ◽  
Author(s):  
RJ Lawn

The effect of spatial arrangement and population density on growth, dry matter production, yield and water use of black gram (Vigna mungo cv. Regur), green gram (V. radiata cv. Berken), cowpea (V. unguiculata CPI 28215) and soybean (Glycine rnax CP126671), under irrigated, rain-fed fallowed and rain-fed double-cropped culture was evaluated at Dalby in south-eastern Queensland. Equidistant spacings increased initial rates of leaf area index (LAI) development and crop water use compared with 1-m rows at the same population densities. In the irrigated and rain-fed fallowed treatments, where more water was available for crop growth, both seed yields and total crop water use were higher in the equidistant spacings. However, in the double-cropped treatment, where water availability was limited, there was no yield difference between rows and equidistant spacings, primarily because initially faster growth in the latter was offset by more severe water stress later in the season. Higher population density also increased initial crop growth rate and water use, particularly in the equidistant spacings. However, there was no significant yield response to density, presumably because subsequent competition for light/ water offset initial effects on growth. Although absolute yield differences existed between legume cultivars within cultural treatments, there were no significant differential responses to either spatial arrangement or population density among these four cultivars.


1996 ◽  
Vol 76 (4) ◽  
pp. 915-919 ◽  
Author(s):  
R. E. Blackshaw ◽  
G. Saindon

A field study was conducted during 3 yr to determine the growth and yield response of Pinto, Pink Red and Great Northern dry beans to various doses of imazethapyr. Imazethapyr was applied postemergence at 0, 25, 50 75 100, 150, and 200 g ha−1 to each class of dry bean. Results indicated that these four classes of dry beans responded similarly to imazethapyr. Dry bean injury increased and yields were reduced as dose of imazethapyr increased. At the proposed use dose of 50 g ha−1, imazethapyr reduced yield by 5 to 6%. Imazethapyr at 100 g ha−1 reduced dry bean yield by 10 to 12% and delayed maturity by 3 to 4 d. Benefits of superior weed control attained with imazethapyr should be weighed against potential crop injury when growers consider using imazethapyr in their dry bean weed management programs. Key words: Herbicide injury, maturity, seed yield, seed weight


2003 ◽  
Vol 129 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Paul D. Colaizzi ◽  
Edward M. Barnes ◽  
Thomas R. Clarke ◽  
Christopher Y. Choi ◽  
Peter M. Waller

2020 ◽  
pp. 1-13
Author(s):  
Christos Vamvakoulas ◽  
Ioannis Argyrokastritis ◽  
Panayiota Papastylianou ◽  
Yolanda Papatheohari ◽  
Stavros Alexandris

A two-year field experiment was conducted to determine the effect of water stress, including Crop Water Stress Index (CWSI), on seed, protein and oil yields, for two hybrids of drip-irrigated soybean in Central Greece. The experiment was set up as a split plot design with four replicates, five main plots (irrigation treatments) and two sub-plots (soybean hybrids, ‘PR91M10’ and ‘PR92B63’). Irrigation was applied to provide 100, 75, 50 and 25% of the crop evapotranspiration needs and 0% non-irrigated. Biomass weight, seed yield, oil and protein concentration were measured after harvest. To compute CWSI, lower and upper baselines were developed based on the canopy temperature measurements of I100 and I0 treatments, respectively. Deficit irrigation had a significant effect on biomass, seed, protein and oil yields. Hybrid PR92B63 was more responsive to irrigation and showed higher biomass, seed protein and oil yields, while the more sensitive hybrid PR91M10 had the ability to maintain productivity with increasing degrees of water stress. The rain-fed treatments significantly reduced biomass production and seed yield compared with the fully-irrigated ones. The highest and the lowest protein and oil yields were obtained in the I100 and I0 treatments respectively in both years and cultivars. Statistically significant exponential relationships were determined between CWSI and biomass, seed, protein and oil yields. Generally, CWSI could be used to measure crop water status and to improve irrigation scheduling of the crop and 0.10 for PR92B63 and 0.19 for PR91M10 could be offered as threshold values under the climatic conditions of the region.


Author(s):  
Morteza Goldani ◽  
Mohammad Bannayan ◽  
Fatemeh Yaghoubi

Abstract This two-year study aimed to determine the most appropriate irrigation scheduling and crop water productivity (CWP) of basil plant under controlled conditions in Ferdowsi University of Mashhad, Iran. The experimental layout was a split-plot design with three replications. Three deficit irrigation (DI) levels (DI0: 100%, DI30: 70% and DI60: 40% of the field capacity) and two basil cultivars (Green and Purple) were applied to main and subplots, respectively. The results showed that there was a decrease in yield and an increase in CWP for fresh leaves and fresh and dry herb by decreasing the irrigation water. However, a significant difference between fresh leaves and fresh and dry herb yield of DI0 and DI30 treatment was not observed. The Green basil had higher leaves and herb yield and CWP than other cultivar. A polynomial relationship was stablished between fresh leaves yield and crop evapotranspiration, however the yield response factor (Ky) indicated a linear relationship between the relative reduction in crop evapotranspiration vs. the relative reduction in yield. The Ky values were obtained as 0.70 and 0.76 for Green and Purple basil, respectively. The results revealed that the irrigation regime of 30% water saving could insure acceptable yield of basil plant and increase in CWP, especially for the Green basil cultivar.


Author(s):  
Joaquim Bellvert ◽  
Karine Adeline ◽  
Shahar Baram ◽  
Lars Pierce ◽  
Blake Sanden ◽  
...  

In California, water is a perennial concern. As competition for water resources increases due to growth in population, California’s tree nut farmers are committed to improving the efficiency of water used for food production. There is an imminent need to have reliable methods that provide information about the temporal and spatial variability of crop water requirements, which allow farmers to make irrigation decisions at field scale. This study focuses on estimating the actual evapotranspiration and crop coefficients of an almond and pistachio orchard located in Central Valley (California) during an entire growing season by combining a simple crop evapotranspiration model with remote sensing data. A dataset of the vegetation index NDVI derived from Landsat-8 was used to facilitate the estimation of the basal crop coefficient (Kcb), or potential crop water use. The soil water evaporation coefficient (Ke) was measured from microlysimeters. The water stress coefficient (Ks) was derived from airborne remotely sensed canopy thermal-based methods, using seasonal regressions between the crop water stress index (CWSI) and stem water potential (Ystem). These regressions were statistically-significant for both crops, indicating clear seasonal differences in pistachios, but not in almonds. In almonds, the estimated maximum Kcb values ranged between 1.05 to 0.90, while for pistachios, it ranged between 0.89 to 0.80. The model indicated a difference of 97 mm in transpiration over the season between both crops. Soil evaporation accounted for an average of 16% and 13% of the total actual evapotranspiration for almonds and pistachios, respectively. Verification of the model-based daily crop evapotranspiration estimates was done using eddy-covariance and surface renewal data collected in the same orchards, yielding an r2 >= 0.7 and average root mean square errors (RMSE) of 0.74 and 0.91 mm day-1 for almond and pistachio, respectively. It is concluded that the combination of crop evapotranspiration models with remotely-sensed data is helpful for upscaling irrigation information from plant to field scale and thus may be used by farmers for making day-to-day irrigation management decisions.


2015 ◽  
Vol 3 (2) ◽  
pp. 128-136
Author(s):  
R. G Bhagyawant ◽  
S. D Gorantiwar ◽  
S. D Dahiwalkar

The present study deals with the study of yield response factor (Ky) for onion crop cultivated under deficit irrigation for Rahuri region (Maharashra). The field experiment was conducted to determine the yield response factor of the onion (Allium cepa L.) cv. N-2-4-1 crop under the deficit irrigation approach during summer season of 2012 and 2013 at Instructional Farm of the Department of Irrigation and Drainage Engineering, Dr. Annasaheb Shinde College of Agricultural Engineering, Mahatma Phule Krishi Vidyapeeth Rahuri. Experiment was carried out in Randomized Block Design (RBD) with 27 treatments and two replications based on different combinations of the quantity of water stress during different crop growth stages. Water applied per irrigation and soil moisture contents before and after irrigation were monitored throughout the season, while onion bulbs were harvested at the end of season and weighed. Average daily crop water use (crop consumptive use) were estimated from the soil moisture content using the soil moisture depletion method. The seasonal yield response factor (Ky) was obtained by relating relative yield decreases to relative crop water use deficit by the regression analysis. The relative yield decreases of the onion crop were proportionally greater with increase in evapotranspiration deficit. It shows the response of yield with respect to the decrease in water consumption. In other words, it explains the decrease in yield caused by the per unit decrease in water consumption. Seasonal crop response factor for onion crop was determined as 1.58, 1.48 and 1.54 during 2012, 2013 and average of both year (2012 &2013) respectively. The yield response factors developed in this study could be used in irrigation design and scheduling for onion in the study area.


Sign in / Sign up

Export Citation Format

Share Document