scholarly journals Multiple Myeloma Cell-Derived Exosomes: Implications on Tumorigenesis, Diagnosis, Prognosis and Therapeutic Strategies

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2865
Author(s):  
Alessandro Allegra ◽  
Mario Di Gioacchino ◽  
Alessandro Tonacci ◽  
Claudia Petrarca ◽  
Caterina Musolino ◽  
...  

Multiple myeloma (MM) is a hematological disease that is still not curable. The bone marrow milieu, with cellular and non-cellular elements, participate in the creation of a pro-tumoral environment enhancing growth and survival of MM plasma cells. Exosomes are vesicles oscillating in dimension between 50 nm and 100 nm in size that can be released by various cells and contribute to the pathogenesis and progression of MM. Exosomes enclose proteins, cytokines, lipids, microRNAs, long noncoding RNAs, and circular RNAs able to regulate interactions between MM plasma cells and adjacent cells. Through exosomes, mesenchymal stem cells confer chemoresistance to MM cells, while myeloma cells promote angiogenesis, influence immune response, cause bone lesions, and have an impact on the outcome of MM patients. In this review, we analyze the role played by exosomes in the progression of monoclonal gammopathies and the effects on the proliferation of neoplastic plasma cells, and discuss the possible employment of exosomes as potential targets for the treatment of MM patients.

2020 ◽  
Vol 20 (18) ◽  
pp. 2316-2323 ◽  
Author(s):  
Alican Kusoglu ◽  
Bakiye G. Bagca ◽  
Neslihan P.O. Ay ◽  
Guray Saydam ◽  
Cigir B. Avci

Background: Ruxolitinib is a selective JAK1/2 inhibitor approved by the FDA for myelofibrosis in 2014 and nowadays, comprehensive investigations on the potential of the agent as a targeted therapy for haematological malignancies are on the rise. In multiple myeloma which is a cancer of plasma cells, the Interleukin- 6/JAK/STAT pathway is emerging as a therapeutic target since the overactivation of the pathway is associated with poor prognosis. Objective: In this study, our purpose was to discover the potential anticancer effects of ruxolitinib in ARH-77 multiple myeloma cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. Methods: Cytotoxic effects of ruxolitinib in ARH-77 and NCI-BL 2171 cells were determined via WST-1 assay. The autophagy mechanism induced by ruxolitinib measured by detecting autophagosome formation was investigated. Apoptotic effects of ruxolitinib were analyzed with Annexin V-FITC Detection Kit and flow cytometry. We performed RT-qPCR to demonstrate the expression changes of the genes in the IL-6/JAK/STAT pathway in ARH-77 and NCI-BL 2171 cells treated with ruxolitinib. Results: We identified the IC50 values of ruxolitinib for ARH-77 and NCI-BL 2171 as 20.03 and 33.9μM at the 72nd hour, respectively. We showed that ruxolitinib induced autophagosome accumulation by 3.45 and 1.70 folds in ARH-77 and NCI-BL 2171 cells compared to the control group, respectively. Treatment with ruxolitinib decreased the expressions of IL-6, IL-18, JAK2, TYK2, and AKT genes, which play significant roles in MM pathogenesis. Conclusion: All in all, ruxolitinib is a promising agent for the regulation of the IL-6/JAK/STAT pathway and interferes with the autophagy mechanism in MM.


Leukemia ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 2661-2669 ◽  
Author(s):  
H Ohguchi ◽  
T Harada ◽  
M Sagawa ◽  
S Kikuchi ◽  
Y-T Tai ◽  
...  

Blood ◽  
2007 ◽  
Vol 109 (11) ◽  
pp. 5002-5010 ◽  
Author(s):  
Nizar J. Bahlis ◽  
Anne M. King ◽  
Despina Kolonias ◽  
Louise M. Carlson ◽  
Hong Yu Liu ◽  
...  

Abstract Although interactions with bone marrow stromal cells are essential for multiple myeloma (MM) cell survival, the specific molecular and cellular elements involved are largely unknown, due in large part to the complexity of the bone marrow microenvironment itself. The T-cell costimulatory receptor CD28 is also expressed on normal and malignant plasma cells, and CD28 expression in MM correlates significantly with poor prognosis and disease progression. In contrast to T cells, activation and function of CD28 in myeloma cells is largely undefined. We have found that direct activation of myeloma cell CD28 by anti-CD28 mAb alone induces activation of PI3K and NFκB, suppresses MM cell proliferation, and protects against serum starvation and dexamethasone (dex)–induced cell death. Coculture with dendritic cells (DCs) expressing the CD28 ligands CD80 and CD86 also elicits CD28-mediated effects on MM survival and proliferation, and DCs appear to preferentially localize within myeloma infiltrates in primary patient samples. Our findings suggest a previously undescribed myeloma/DC cell-cell interaction involving CD28 that may play an important role in myeloma cell survival within the bone marrow stroma. These data also point to CD28 as a potential therapeutic target in the treatment of MM.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 742-742 ◽  
Author(s):  
Sonia D'Souza ◽  
Davide Del Prete ◽  
Flavia Esteve ◽  
Benedicte Sammut ◽  
Shibing Yu ◽  
...  

Abstract Abstract 742 Multiple Myeloma (MM) is a plasma cell malignancy characterized by formation of lytic bone lesions in approximately 90% of the patients which do not heal even after prolonged complete remission. The basis for this selective and protracted suppression of osteoblast (OBL) differentiation from immature bone marrow stromal cells (MSC) is unknown. Although factors that inhibit OBL differentiation in MM have been identified, such as DKK-1, sFRP2, IL-3, IL-7, and TNF-a, none of these factors have been shown to be responsible for the protracted suppression of OBL differentiation in MM. Further, inhibition of Runx2 activity, a critical transcription factor required for OBL differentiation has been reported in MM, but the mechanisms responsible are still unclear. To address the basis for the protracted inhibition of OBL differentiation in MM, we have developed a murine model of MM-induced OBL suppression using a genetically modified murine myeloma cell line that expresses GFP and thymidine kinase (5TGM1-GFP-TK MM cells). Injection of these 5TGM1-GFP-TK MM cells into SCID mice resulted in persistent inhibition of OBL differentiation even when the MM cells were totally depleted by ganciclovir treatment. The MSC from these mice had selective inhibition of OBL differentiation, but not adipogenesis, and minimally differentiated to OBL even when treated with BMP2. These MSC expressed elevated levels of the SNAG family Zn-finger containing transcriptional repressor, Gfi-1, which we found can cause both acute and protracted suppression of RUNX2. In support of these results, decreased RUNX2 expression and elevated GFI-1 levels were also protracted in MSC from 7 MM patients with impaired OBL differentiation compared to normals. Further, 5TGM1 inhibition of OBL differentiation in vitro was dependent on TNF-a and IL-7, and neutralizing antibodies to TNF-a and IL-7 blocked MM-induced Runx2 suppression. In addition, TNF-a and IL-7 increased Gfi-1 in a murine OBL precursor cell line (MC4). Deletion analysis of the Runx2 P1 promoter revealed that a 943-bp region containing 27 putative Gfi-1 binding sites (AA(T/G)C core) was responsible for MM repression of Runx2 expression. Importantly, siRNA knockdown of GFI-1 expression restored RUNX2, OCN, BSP and OSX expression in both MM exposed MC4 cells and in MSC from MM patients. These results support an important role for GFI-1 in repressing RUNX2 expression in MSC exposed to MM cells, thereby inhibiting osteoblastogenesis in MM. Disclosures: Roodman: Novartis: Consultancy, Research Funding, Speakers Bureau; Amgen: Consultancy; Celgene: Consultancy; Acceleron: Consultancy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1915-1915
Author(s):  
Unn-Merete Fagerli ◽  
Thorsten Stühmer ◽  
Toril Holien ◽  
Randi Utne Holt ◽  
Ove Bruland ◽  
...  

Abstract Abstract 1915 Multiple myeloma is a paradigm for a malignant disease that exploits external stimuli of the microenvironment for growth and survival. A thorough understanding of the complex interactions between malignant plasma cells and their surrounding requires a detailed analysis of the transcriptional response of myeloma cells to environmental signals. We hypothesized that the intracellular signals evoked by cytokines converge and regulate transcription of a set of genes that are common targets for several growth factors and therefore constitute pivotal mediators of the tumor-promoting effects of autocrine or paracrine stimuli. To identify such targets, we determined the changes in gene expression induced by IL-6, TNFalpha, IL-21 or co-culture with bone marrow stromal cells in myeloma cell lines. Among a limited set of genes that were consistently activated in response to growth factors, a prominent transcriptional target of cytokine-induced signaling in myeloma cells was the gene encoding the serine/threonine kinase SGK1, which is a down-stream effector of PI3-kinase and highly homologous to AKT. We could demonstrate a rapid, strong and sustained induction of SGK1 in the cell lines INA-6, ANBL-6, IH-1, OH-2 and MM.1S as well as in primary myeloma cells. Pharmacologic inhibition of the JAK/STAT pathway abolished STAT3 phosphorylation and SGK1 induction. In addition, shRNA-mediated knock-down of STAT3 reduced basal and induced SGK1 levels, demonstrating the involvement of the JAK/STAT3 signaling pathway in SGK1 induction. Furthermore, down-regulation of SGK1 by shRNAs resulted in decreased proliferation and viability of myeloma cell lines. Our results indicate that SGK1 is a highly cytokine-responsive gene in myeloma cells promoting their growth and survival and represents an attractive candidate for further evaluation as a therapeutic target. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 113 (18) ◽  
pp. 4309-4318 ◽  
Author(s):  
Yu-Tzu Tai ◽  
Ender Soydan ◽  
Weihua Song ◽  
Mariateresa Fulciniti ◽  
Kihyun Kim ◽  
...  

Abstract CS1 is highly expressed on tumor cells from the majority of multiple myeloma (MM) patients regardless of cytogenetic abnormalities or response to current treatments. Furthermore, CS1 is detected in MM patient sera and correlates with active disease. However, its contribution to MM pathophysiology is undefined. We here show that CS1 knockdown using lentiviral short-interfering RNA decreased phosphorylation of ERK1/2, AKT, and STAT3, suggesting that CS1 induces central growth and survival signaling pathways in MM cells. Serum deprivation markedly blocked survival at earlier time points in CS1 knockdown compared with control MM cells, associated with earlier activation of caspases, poly(ADP-ribose) polymerase, and proapoptotic proteins BNIP3 and BIK. CS1 knockdown further delayed development of MM tumor and prolonged survival in mice. Conversely, CS1 overexpression promoted myeloma cell growth and survival by significantly increasing myeloma adhesion to bone marrow stromal cells (BMSCs) and enhancing myeloma colony formation in semisolid culture. Moreover, CS1 increased c-maf–targeted cyclin D2-dependent proliferation, -integrin β7/αE-mediated myeloma adhesion to BMSCs, and -vascular endothelial growth factor-induced bone marrow angiogenesis in vivo. These studies provide direct evidence of the role of CS1 in myeloma pathogenesis, define molecular mechanisms regulating its effects, and further support novel therapies targeting CS1 in MM.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 7606-7606 ◽  
Author(s):  
I. Breitkreutz ◽  
Y. Tai ◽  
X. Li ◽  
R. Coffey ◽  
M. S. Raab ◽  
...  

7606 Background: Myeloma bone disease is caused by an enhanced osteoclast (OCL) activation, leading to osteolytic bone lesions. OCL have recently been reported to produce abundant B-cell activating factor (BAFF) in the bone marrow microenvironment that is important for myeloma cell growth and survival (Blood 106, 1021–30, 2005; ASH2005, #627). The proteasome inhibitor bortezomib (PS341, Velcade) has potent anti-myeloma activity with impressive clinical responses. A recent study indicated that bortezomib has inhibitory effects on OCL (ASH 2005, #2488). Lenalidomide (CC-5013, Revlimid) is an immunomodulatory derivative of thalidomide that has shown promising anti-myeloma effects in patients with relapsed or refractory multiple myeloma (MM) (ASH 2005, #6 & #1565). However, the effect of lenalidomide on human OCL lineage is unknown. Therefore, the aim of this study is to investigate the effect of lenalidomide and bortezomib on human OCL. Methods: OCL formation from healthy donors and MM patients were stimulated with RANKL (50ng/ml) and GM-CSF (10ng/ml) in 20% FBS/RPMI. Cells were incubated with lenalidomide 2μM or bortezomib 2nM, alone and in combination, for two weeks followed by [3H]thymidine uptake assay to measure growth inhibition of OCL. Similar experiments were also performed in cocultures of CD138-purified cells from MM patients with OCL, in the presence or absence of lenalidomide and bortezomib. In addition, ELISA was performed to measure cytokine release of BAFF produced by OCL in these cultures. Results: OCL growth was decreased by lenalidomide (n=6) (median 49.2%, range 20–62.5%; coculture: 53% and 35%) as well as bortezomib (96 and 49%; coculture 63 and 59%) and by the combination of both drugs (95 and 55%; coculture 42 and 44%). BAFF secretion was dramatically decreased in cultures treated with lenalidomide 2μM (n=3) (median 72%, range 61–75.9%). Conclusions: These results indicate that lenalidomide and bortezomib inhibit OCL growth and survival. Importantly, lenalidomide and bortezomib also block growth and survival of MM cells cocultured with OCL, suggesting that lenalidomide may inhibit OCL growth and survival through inhibition of BAFF and may prevent development of osteolytic lesions in MM. No significant financial relationships to disclose.


2021 ◽  
pp. 1-11
Author(s):  
Katrina A. Harmon ◽  
Sara Roman ◽  
Harrison D. Lancaster ◽  
Saeeda Chowhury ◽  
Elizabeth Cull ◽  
...  

Multiple myeloma (MM) is a deadly, incurable malignancy in which antibody-secreting plasma cells (PCs) become neoplastic. Previous studies have shown that the PC niche plays a role cancer progression. Bone marrow (BM) cores from MM and a premalignant condition known as monoclonal gammopathy of unknown significance (MGUS) patients were analyzed with confocal and transmission electron microscopy. The BM aspirates from these patients were used to generate 3D PC cultures. These in vitro cultures were then assayed for the molecular, cellular, and ultrastructural hallmarks of dysfunctional PC at days 1 and 5. In vivo, evidence of PC endoplasmic reticulum stress was found in both MM and MGUS BM; however, evidence of PC autophagy was found only in MM BM. Analysis of in vitro cultures found that MM PC can survive and maintain a differentiated phenotype over an unprecedented 5 days, had higher levels of paraprotein production when compared to MGUS-derived cultures, and showed evidence of PC autophagy as well. Increased fibronectin deposition around PC associated with disease severity and autophagy dysregulation was also observed. 3D cultures constructed from BM aspirates from MGUS and MM patients allow for long-term culture of functional PC while maintaining their distinct morphological phenotypes.


Sign in / Sign up

Export Citation Format

Share Document