scholarly journals How Identifying Circumgalactic Gas by Line-of-sight Velocity instead of the Location in 3D Space Affects O vi Measurements

2021 ◽  
Vol 923 (2) ◽  
pp. 137
Author(s):  
Stephanie H. Ho ◽  
Crystal L. Martin ◽  
Joop Schaye

Abstract The high incidence rate of the O vi λλ1032, 1038 absorption around low-redshift, ∼L * star-forming galaxies has generated interest in studies of the circumgalactic medium. We use the high-resolution EAGLE cosmological simulation to analyze the circumgalactic O vi gas around z ≈ 0.3 star-forming galaxies. Motivated by the limitation that observations do not reveal where the gas lies along the line of sight, we compare the O vi measurements produced by gas within fixed distances around galaxies and by gas selected using line-of-sight velocity cuts commonly adopted by observers. We show that gas selected by a velocity cut of ±300 km s−1 or ±500 km s−1 produces a higher O vi column density, a flatter column density profile, and a higher covering fraction compared to gas within 1, 2, or 3 times the virial radius (r vir) of galaxies. The discrepancy increases with impact parameter and worsens for lower-mass galaxies. For example, compared to the gas within 2 r vir, identifying the gas using velocity cuts of 200–500 km s−1 increases the O vi column density by 0.2 dex (0.1 dex) at 1 r vir to over 0.75 dex (0.7 dex) at ≈ 2 r vir for galaxies with stellar masses of 109–109.5 M ⊙ (1010–1010.5 M ⊙). We furthermore estimate that excluding O vi outside r vir decreases the circumgalactic oxygen mass measured by Tumlinson et al. (2011) by over 50%. Our results demonstrate that gas at large line-of-sight separations but selected by conventional velocity windows has significant effects on the O vi measurements and may not be observationally distinguishable from gas near the galaxies.

1997 ◽  
Vol 166 ◽  
pp. 161-164
Author(s):  
Cécile Gry ◽  
Olivier Dupin

AbstractWith new high resolution UV spectra of ϵ CMa we show that the gas column density in this sight-line is less than 4 1017 cm−2, that the neutral gas density is less than 10−5 cm−3 after the first 3 parsecs, and that the Local Cloud seems to be almost undepleted and to extend to no more than 0.6 pc in this direction.


2021 ◽  
Vol 503 (4) ◽  
pp. 6112-6135
Author(s):  
Peter Senchyna ◽  
Daniel P Stark ◽  
Stéphane Charlot ◽  
Jacopo Chevallard ◽  
Gustavo Bruzual ◽  
...  

ABSTRACT As deep spectroscopic campaigns extend to higher redshifts and lower stellar masses, the interpretation of galaxy spectra depends increasingly upon models for very young stellar populations. Here we present new HST/COS ultraviolet spectroscopy of seven nearby (<120 Mpc) star-forming regions hosting very young stellar populations (∼4–20 Myr) with optical Wolf–Rayet stellar wind signatures, ideal laboratories in which to benchmark these stellar models. We detect nebular C iii] in all seven, but at equivalent widths uniformly <10 Å. This suggests that even for very young stellar populations, the highest equivalent width C iii] emission at ≥15 Å is reserved for inefficiently cooled gas at metallicities at or below that of the SMC. The spectra also reveal strong C iv P-Cygni profiles and broad He ii emission formed in the winds of massive stars, including some of the most prominent He ii stellar wind lines ever detected in integrated spectra. We find that the latest stellar population synthesis prescriptions with improved treatment of massive stars nearly reproduce the entire range of stellar He ii wind strengths observed here. However, we find that these models cannot simultaneously match the strongest wind features alongside the optical nebular line constraints. This discrepancy can be naturally explained by an overabundance of very massive stars produced by a high incidence of binary mass transfer and mergers occurring on short ≲10 Myr time-scales, suggesting these processes may be crucial for understanding systems dominated by young stars both nearby and in the early Universe.


2004 ◽  
Vol 217 ◽  
pp. 452-457 ◽  
Author(s):  
M. Bureau ◽  
F. Walter ◽  
J. van Gorkom ◽  
C. Carignan

Results are presented from a wide area, high resolution HI synthesis survey of the outer regions of the nearby M81 group, where internal (galactic) and external (group-related) evolution processes can be studied simultaneously in great detail. The survey encompasses the star forming dwarf galaxies M81dwA, UGC4483, and HoII, where evidence of ram pressure stripping was recently discovered. The data do not reveal any intergalactic HI, but the outer parts of HoII are reminiscent of tidal tails. We argue however that those structures are equally consistent with the latest ram pressure models including cooling. The case for a hot intergalactic medium in this poor, spiral-only group is thus still open. The survey also puts tight constraints on possible counterparts to the local high velocity cloud population in an external group, reaching a 3σ column density of 1019 atom cm−2 and a 6σ limiting mass of 1.5 × 105M⊙.


Author(s):  
Hsi-An Pan ◽  
Yusuke Fujimoto ◽  
Elizabeth J. Tasker

AbstractObservations and simulations have now reached the point where the giant molecular cloud (GMCs) populations can be studied over a whole galaxy. This is immensely helpful for understanding star formation. Yet, are these two groups really comparing the same objects? While simulators work in 6D (x, y, z, vx, vy, vz) position-position-position (PPP) space, observers see 2 + 1D (RA, Dec, vlos) projected properties along the line of sight, identifying clouds in position-position-velocity (PPV) space. In this research we generated PPP and PPV data for a high-resolution simulated galaxy and compared the identified clouds in both data sets. The results show that 70% of the clouds have a single counterpart in each data structure. Cloud boundaries of these clouds are indeed the same. Scatter of the derived cloud properties (radius and velocity dispersion) between PPP and PPV are typically within a factor of two. However, this small scatter can make it difficult to determine if a cloud is truly gravitationally bound.


1997 ◽  
Vol 166 ◽  
pp. 75-78
Author(s):  
M. Gölz ◽  
N. Kappelmann ◽  
I. Appenzeller ◽  
J. Barnstedt ◽  
A. Fromm ◽  
...  

AbstractDuring the second flight of the ORFEUS-SPAS satellite (Nov./Dec. 96) high resolution (λ/∆λ = 10,000) Echelle-spectra of BD+28° 4211 in the wavelength regime 912–1400 Å have been taken. Deuterium can be clearly identified in the ORFEUSII Echelle-spectra of this star. For the first time it was possible to take spectra of faint, not redshifted objects in the far ultraviolet with a sufficient spectral resolution to study the deuterium column density in the whole spectral range of the Lyman-series down to the Lyman-limit. We obtained a value of log(ND) = 14.7 (±0.3) towards BD+28° 4211. The hydrogen column density has been determined using ORFEUS Echelle- and IUE-spectra of Ly-α (log(NH) = 19.8 (±0.2)). Thus a value of 8 × 10−6 can be obtained for the D/H-ratio on the line-of-sight towards BD+28° 4211.


2020 ◽  
Vol 636 ◽  
pp. A16 ◽  
Author(s):  
C. Guevara ◽  
J. Stutzki ◽  
V. Ossenkopf-Okada ◽  
R. Simon ◽  
J. P. Pérez-Beaupuits ◽  
...  

Context. The [C II] 158 μm far-infrared fine-structure line is one of the most important cooling lines of the star-forming interstellar medium (ISM). It is used as a tracer of star formation efficiency in external galaxies and to study feedback effects in parental clouds. High spectral resolution observations have shown complex structures in the line profiles of the [C II] emission. Aims. Our aim is to determine whether the complex profiles observed in [12C II] are due to individual velocity components along the line-of-sight or to self-absorption based on a comparison of the [12C II] and isotopic [13C II] line profiles. Methods. Deep integrations with the SOFIA/upGREAT 7-pixel array receiver in the sources of M43, Horsehead PDR, Monoceros R2, and M17 SW allow for the detection of optically thin [13C II] emission lines, along with the [12C II] emission lines, with a high signal-to-noise ratio. We first derived the [12C II] optical depth and the [C II] column density from a single component model. However, the complex line profiles observed require a double layer model with an emitting background and an absorbing foreground. A multi-component velocity fit allows us to derive the physical conditions of the [C II] gas: column density and excitation temperature. Results. We find moderate to high [12C II] optical depths in all four sources and self-absorption of [12C II] in Mon R2 and M17 SW. The high column density of the warm background emission corresponds to an equivalent Av of up to 41 mag. The foreground absorption requires substantial column densities of cold and dense [C II] gas, with an equivalent Av ranging up to about 13 mag. Conclusions. The column density of the warm background material requires multiple photon-dominated region surfaces stacked along the line of sight and in velocity. The substantial column density of dense and cold foreground [C II] gas detected in absorption cannot be explained with any known scenario and we can only speculate on its origins.


2021 ◽  
Vol 923 (1) ◽  
pp. 56
Author(s):  
Daniel DeFelippis ◽  
Nicolas F. Bouché ◽  
Shy Genel ◽  
Greg L. Bryan ◽  
Dylan Nelson ◽  
...  

Abstract The circumgalactic medium (CGM) contains information on gas flows around galaxies, such as accretion and supernova-driven winds, which are difficult to constrain from observations alone. Here, we use the high-resolution TNG50 cosmological magnetohydrodynamical simulation to study the properties and kinematics of the CGM around star-forming galaxies in 1011.5–1012 M ⊙ halos at z ≃ 1 using mock Mg ii absorption lines, which we generate by postprocessing halos to account for photoionization in the presence of a UV background. We find that the Mg ii gas is a very good tracer of the cold CGM, which is accreting inward at inflow velocities of up to 50 km s−1. For sight lines aligned with the galaxy’s major axis, we find that Mg ii absorption lines are kinematically shifted due to the cold CGM’s significant corotation at speeds up to 50% of the virial velocity for impact parameters up to 60 kpc. We compare mock Mg ii spectra to observations from the MusE GAs FLow and Wind (MEGAFLOW) survey of strong Mg ii absorbers (EW2796 Å 0 > 0.5 Å). After matching the equivalent-width (EW) selection, we find that the mock Mg ii spectra reflect the diversity of observed kinematics and EWs from MEGAFLOW, even though the sight lines probe a very small fraction of the CGM. Mg ii absorption in higher-mass halos is stronger and broader than in lower-mass halos but has qualitatively similar kinematics. The median-specific angular momentum of the Mg ii CGM gas in TNG50 is very similar to that of the entire CGM and only differs from non-CGM components of the halo by normalization factors of ≲1 dex.


1976 ◽  
Vol 70 ◽  
pp. 209-217 ◽  
Author(s):  
Geraldine J. Peters

The spectra of the ‘pole-on’ Be stars υ Cyg and μ Cen have been observed in the region λλ 1000–1450 Å with the Princeton Ultraviolet Spectrometer on board the Copernicus satellite. The data include scans of intermediate resolution (0.2 Å) with U2 and high resolution scans (0.05 Å) of selected suspected shell lines with U1. The spectra of υ Cyg and μ Cen are compared with a complete intermediate resolution Copernicus scan of the equator-on Be star φ Per. The ultraviolet spectra of υ Cyg and μ Cen appear to be identical to those observed in non-Be stars of comparable ground-based spectral type. Neither emission nor shell features are observed. However, numerous strong shell features are seen in φ Per. An upper limit on the column density of hydrogen in our line of sight is computed for υ Cyg from the observed strength of a weak feature at λ 1130.4 Å identified as an Fe III shell line. Estimates for the dimensions of the circumstellar envelope are then obtained. Some implications of the strengths of the Fe III shell lines at λ 1130 Å observed in υ Cyg, μ Cen, φ Per, and other Be stars are discussed.


2020 ◽  
Vol 493 (3) ◽  
pp. 3535-3547 ◽  
Author(s):  
Catriona A Sinclair ◽  
Giovanni P Rosotti ◽  
Attila Juhasz ◽  
Cathie J Clarke

ABSTRACT Annular structures in protoplanetary discs, such as gaps and rings, are now ubiquitously found by high-resolution Atacama Large Millimetre Array observations. Under the hypothesis that they are opened by planets, in this paper we investigate how the minimum planet mass needed to open a gap varies across different stellar host masses and distances from the star. The dependence on the stellar host mass is particularly interesting because, at least in principle, gap opening around low-mass stars should be possible for lower mass planets, giving us a look into the young, low-mass planet population. Using dusty hydrodynamical simulations, we find however the opposite behaviour, as a result of the fact that discs around low-mass stars are geometrically thicker: gap opening around low-mass stars can require more massive planets. Depending on the theoretical isochrone employed to predict the relationship between stellar mass and luminosity, the gap opening planet mass could also be independent of stellar mass, but in no case we find that gap opening becomes easier around low-mass stars. This would lead to the expectation of a lower incidence of such structures in lower mass stars, since exoplanet surveys show that low-mass stars have a lower fraction of giant planets. More generally, our study enables future imaging observations as a function of stellar mass to be interpreted using information on the mass versus luminosity relations of the observed samples.


2021 ◽  
Vol 502 (2) ◽  
pp. 1768-1784
Author(s):  
Yue Hu ◽  
A Lazarian

ABSTRACT The velocity gradients technique (VGT) and the probability density functions (PDFs) of mass density are tools to study turbulence, magnetic fields, and self-gravity in molecular clouds. However, self-absorption can significantly make the observed intensity different from the column density structures. In this work, we study the effects of self-absorption on the VGT and the intensity PDFs utilizing three synthetic emission lines of CO isotopologues 12CO (1–0), 13CO (1–0), and C18O (1–0). We confirm that the performance of VGT is insensitive to the radiative transfer effect. We numerically show the possibility of constructing 3D magnetic fields tomography through VGT. We find that the intensity PDFs change their shape from the pure lognormal to a distribution that exhibits a power-law tail depending on the optical depth for supersonic turbulence. We conclude the change of CO isotopologues’ intensity PDFs can be independent of self-gravity, which makes the intensity PDFs less reliable in identifying gravitational collapsing regions. We compute the intensity PDFs for a star-forming region NGC 1333 and find the change of intensity PDFs in observation agrees with our numerical results. The synergy of VGT and the column density PDFs confirms that the self-gravitating gas occupies a large volume in NGC 1333.


Sign in / Sign up

Export Citation Format

Share Document