scholarly journals Effect of two homeopathic remedies at different degrees of dilutions on the wound closure of 3T3 fibroblasts in in vitro scratch assay

2021 ◽  
Vol 11 (40) ◽  
pp. 164-165
Author(s):  
Katarina Hostanska ◽  
Matthias Rostock ◽  
Stephan Baumgartner ◽  
Reinhard Saller

Background: Since ancient times, preparations from traditional medicinal plants e.g. Arnica montana, Calendula officinalis or Hypericum perforatum have been used for different wound healing purposes. The aim of this study was to investigate the efficacy of the commercial low dilution homeopathic remedy Similasan® Arnica plus Spray, a preparation of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712-2) and medium diluted SIM WuS (Petroleum 15x, Arnica montana 15x, Calcium fluoratum 12x, Calendula officinalis 12x, Hepar sulfuris 12x and Mercurius solubilis 15x; 1101-4), on the wound healing in cultured NIH 3T3 fibroblasts. Both remedies were from Similasan AG (Jonen, Switzerland) and prepared according the German Homoeopathic Pharmacopoeia (GHP) following descriptions 4a for arnica, 3a for marigold and St. John’s wort, 2a for comfrey, 5a for petroleum, and 6 for calcium fluoride, hepar sulfuris and mercurius solubilis. Materials and Methods: Cell proliferation, migration and wound closure promoting effect of the preparations (0712-2, 1101- 4) and their succussed solvents (0712-1, 1101-3) were investigated on mouse NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined wound area. All assays were performed in three independent controlled experiments. In some experiments diluted unsuccussed alcohol (0712-3) was also investigated. Results: Preparations (0712-1), (0712-2), (0712-3), (1101-3) and (1101-4) were investigated at decimal dilution steps from 1x to 4x. Cell viabilty was not affected by any of the substances and (0712-1) and (0712-2) showed no stimulating effect on cell proliferation. Preparation (0712-2) exerted a stimulating effect on fibroblast migration (31.7%) vs 15% with succussed solvent (0712-1) at 1:100 dilutions (p0.05). Positive control 2 ng/ml EGF increased migratory activity of cells by 49.8%. Preparation (0712-2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
R. Kuonen ◽  
U. Weissenstein ◽  
K. Urech ◽  
M. Kunz ◽  
K. Hostanska ◽  
...  

Viscum albumL. lipophilic extract (VALE) contains pharmacologically active pentacyclic triterpenes that are known to exhibit immunomodulatory, antitumor, and wound healing activity. Preliminary clinical observations indicate that VALE was able to influence cutaneous wound healingin vivo. The objective of this study was to investigate wound closure related properties of VALEin vitro. As measured in a wound healing assay, VALE and its predominant triterpene oleanolic acid (OA) significantly and dose dependently promoted the migration of NIH/3T3 fibroblastsin vitro, thereby leading to an enhanced wound closure. Compared to the negative control, maximal stimulation by 26.1% and 26.2%, respectively, was attained with 10 μg/mL VALE and 1 μg/mL OA. Stimulation of proliferation in NIH/3T3 fibroblasts by VALE and OA could be excluded. At higher concentrations both substances affected proliferation and viability of NIH/3T3 fibroblasts and HaCat keratinocytes. In the toxic range of concentrations of VALE and OA, migration of NIH/3T3 fibroblasts was suppressed. The extent of the stimulatory effect on cell migration of VALE quite closely corresponded to the effect expected by the concentrations of OA contained in the crude extract VALE. These data support the casual observation thatViscum albumL. lipophilic extract might modulate wound healing related processesin vivo.


1970 ◽  
Vol 7 (3) ◽  
pp. 14-19 ◽  
Author(s):  
Hekdin Marsius Sipayung ◽  
Jansen Silalahi ◽  
Yuandani Y

Objectives: The objective of this study was to investigate the activity of combination of hydrolyzed VCO (HVCO) and chitosan on NIH 3T3 cell proliferation activity, NIH 3T3 cell migration, COX-2 and VEGF protein expression. Design: In vitro cytotoxic assay was determined by MTT (MicrocultureTetrazoliumTehnique) assay, cell proliferation activity was measured by calculating cell viability incubated 24 hours, 48 hours and 72 hours, wound closure percentage was tested by scratch wound healing method, expression of COX-2 protein and VEGF protein were measured by immunocytochemical method. Interventions: The variable that was intervened in this study was the concentration of HVCO and chitosan. Main Outcome Measures: The main measurements carried out in this study were the absorbance value of HVCO and chitosan which was converted into viability cell, proliferation activity, percentage of wound closure, and percentage of COX-2 and VEGF protein expression. Results: Cytotoxic activity of HVCO and chitosan resulted the best concentration at 31.25 μg/ml, scratch wound healing assay from a combination HVCO and chitosan resulted the best migration of fibroblast cells at a ratio of 1:1 with HVCO 62.5 μg/ml and chitosan 62.5 μg/ml, combination of HVCO 62.5 μg/ml and chitosan 62.5 μg/ml (1:1) increased expression of COX-2 and VEGF. Conclusion: Combination of HVCO and chitosan could increase NIH 3T3 cell migration, COX-2 and VEGF protein expression. Combination of HVCO and chitosan had better wound healing activity in vitro than single use. Keywords: Rhizomucor miehei, viability, proliferation, migration, expression


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Sara H. Freiesleben ◽  
Jens Soelberg ◽  
Nils T. Nyberg ◽  
Anna K. Jäger

The present study was carried out to investigate the wound healing potentials of 17 medicinal plants historically used in Ghana for wound healing. Warm and cold water extracts were prepared from the 17 dried plant species and tested in vitro in the scratch assay with NIH 3T3 fibroblasts from mice. The wound healing scratch assay was used to evaluate the effect of the plants on cell proliferation and/or migration in vitro, as a test for potential wound healing properties. After 21 hours of incubation increased proliferation and/or migration of fibroblasts in the scratch assay was obtained for 5 out of the 17 plant species. HPLC separation of the most active plant extract, which was a warm water extract of Philenoptera cyanescens, revealed the wound healing activity to be attributed to rutin and a triglycoside of quercetin. The present study suggests that Allophylus spicatus, Philenoptera cyanescens, Melanthera scandens, Ocimum gratissimum, and Jasminum dichotomum have wound healing activity in vitro.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 222
Author(s):  
Suneel Kumar ◽  
Yuying Tan ◽  
Francois Berthiaume

Pressure ulcers (PUs) or sores are a secondary complication of diabetic neuropathy and traumatic spinal cord injury (SCI). PUs tend to occur in soft tissues located around bony prominences and may heal slowly or not at all. A common mechanism underlying impaired healing of PUs may be dysfunction of the local neurovascular system including deficiency of essential neuropeptides, such as substance P (SP). Previous studies indicate that disturbance in cutaneous sensory innervation leads to a defect in all stages of wound healing, as is the case after SCI. It is hypothesized that nerve fibers enhance wound healing by promoting initial inflammation via the releasing of neuropeptides such as SP. Therefore, we investigated whether exogenous SP improves skin wound healing using in vitro and in vivo models. For in vitro studies, the effects of SP on keratinocyte proliferation and wound closure after a scratch injury were studied under normoxia (pO2 ~21%) or hypoxia (pO2 ~1%) and in presence of normal serum (10% v/v) or low serum (1% v/v) concentrations. Hypoxia and low serum both significantly slowed cell proliferation and wound closure. Under combined low serum and hypoxia, used to mimic the nutrient- and oxygen-poor environment of chronic wounds, SP (10−7 M) significantly enhanced cell proliferation and wound closure rate. For in vivo studies, two full-thickness excisional wounds were created with a 5 mm biopsy punch on the dorsum on either side of the midline of 15-week-old C57BL/6J male and female mice. Immediately, wounds were treated topically with one dose of 0.5 μg SP or PBS vehicle. The data suggest a beneficial role in wound closure and reepithelization, and thus enhanced wound healing, in male and female mice. Taken together, exogenously applied neuropeptide SP enhanced wound healing via cell proliferation and migration in vitro and in vivo. Thus, exogenous SP may be a useful strategy to explore further for treating PUs in SCI and diabetic patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Metar Siriwattanasatorn ◽  
Arunporn Itharat ◽  
Pakakrong Thongdeeying ◽  
Buncha Ooraikul

Skin ensures that a constant internal environment can be maintained in an ever-changing external environment. When a wound occurs on the skin, the inflammatory and proliferative phases are initiated in response to injury. Thai traditional medicine (TTM), using medicinal plants and ancient knowledge, has been used to treat wounds. Eight Thai medicinal plants, most commonly used to treat wounds, were evaluated for their in vitro biological activities such as antioxidation by NBT assay, anti-inflammation by production inhibition of NO, promoting fibroblast cell proliferation, and wound closure activities. Plant materials were extracted with 95% ethanol or distilled water and then concentrated and dried. Statistical analysis of data was done using one-way ANOVA at p value of 0.05. The ethanolic extracts of Garcinia mangostana L., Glycyrrhiza glabra L., and Nigella sativa L. could inhibit the production of superoxide anion with the IC50 values of 13.97 ± 0.38, 28.62 ± 1.91, and 71.54 ± 3.22 μg/ml and nitric oxide with the IC50 values of 23.97 ± 0.91, 46.35 ± 0.43, and 78.48 ± 4.46 μg/ml, respectively. These extracts could promote cell proliferation and accelerate wound recovery at the rate of 2.02 ± 0.03, 2.12 ± 0.03, and 2.65 ± 0.05% per hour, respectively. Three established markers from these three plants were selected according to the selection criteria. Alpha-mangostin, glycyrrhizin, and thymoquinone were found to be the active markers for wound closure activities. The ethanolic extracts of G. mangostana, G. glabra, and N. sativa could scavenge superoxide anion and inhibit the production of nitric oxide; therefore these extracts could assist in surpassing the inflammatory phase and protected the cells surrounding the wound area. Most importantly, these extracts also increased the proliferation and accelerated wound closure, indicating that these plant extracts could be promoting wound healing processes and support the use of TTM.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chun Yue ◽  
Zi Guo ◽  
Yufang Luo ◽  
Jingjing Yuan ◽  
Xinxing Wan ◽  
...  

Objective. Mesenchymal stem cells (MSCs) are considered a promising therapy for wound healing. Here, we explored the role of c-Jun in diabetic wound healing using human umbilical cord-derived MSCs (hUC-MSCs). Methods. Freshly isolated hUC-MSCs were subjected to extensive in vitro subcultivation. The cell proliferative and migratory capacities were assessed by the Cell Counting Kit-8 and scratch assays, respectively. c-Jun expression was evaluated by RT-PCR and western blot analysis. The function of c-Jun was investigated with lentivirus transduction-based gene silencing and overexpression. Diabetes mellitus was induced in SD rats on a high-glucose/fat diet by streptozocin administration. Wounds were created on the dorsal skin. The effects of c-Jun silencing and overexpression on wound closure by hUC-MSCs were examined. Reepithelialization and angiogenesis were assessed by histological and immunohistochemical analysis, respectively. Platelet-derived growth factor A (PDGFA), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) levels were determined by western blot analysis. Results. hUC-MSCs showed gradually decreased cell proliferation, migration, and c-Jun expression during subcultivation. c-Jun silencing inhibited cell proliferation and migration, while c-Jun overexpression enhanced proliferation but not migration. Compared with untransduced hUC-MSCs, local subcutaneous injection of c-Jun-overexpressing hUC-MSCs accelerated wound closure, enhanced angiogenesis and reepithelialization at the wound bed, and increased PDGFA and HGF levels in wound tissues. Conclusion. c-Jun overexpression promoted hUC-MSC proliferation and migration in vitro and accelerated diabetic wound closure, reepithelization, and angiogenesis by hUC-MSCs in vivo. These beneficial effects of c-Jun overexpression in diabetic wound healing by hUC-MSCs were at least partially mediated by increased PDGFA and HGF levels in wound tissues.


2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


2020 ◽  
pp. 152808372097634
Author(s):  
Daiqi Jiang ◽  
Zaiju Tong ◽  
Lingjun Peng ◽  
Lingzhi Zhang ◽  
Qianzi Ruan ◽  
...  

Novel the bilayered electrospun biosheet with rapid cell mimiciking and proliferative efficacy will be suitable for wound healing application. The optimized concentration of gelatin (G) and sodium alginate (A) biosheet with nanofibrous Poly (3-hydroxybutyric acid) (P) as a bilayered elctrospun matrix through electrospinning. The engineered GAP bilayered biosheet involves tissue formation at extra cellular matrix (ECM) which further characterized its function in vitro and invivo. Here we fabricated GAP which exhibit better physiochemical properties, biological and mechanical properties with superior prosomes it enhance air passable at skin wounds. The Bilayered biosheet matrix possess better biocompatibility, cell adherence, fructuous and cell to cell interactions evaluated using cell lines. Furthermore, GAP bilayered matrix regulates growth factors to attain maximum wound closure efficiency during invivo. Thus, the fabricated GAP electrospun biosheet would be a possible wound dressing for skin wound applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Marina L. C. Caxito ◽  
Rachell R. Correia ◽  
Anne Caroline C. Gomes ◽  
Graça Justo ◽  
Marsen G. P. Coelho ◽  
...  

Xanthosoma sagittifoliumSchott is a herb of the Araceae family, popularly known as taioba, which is consumed as food in some regions of Brazil, Africa, and Asia. This species has already been evaluated for the antifungal activities. However, based on its potential antitumor activity, the present study further aimed to examine the antitumor, as well as chelation, activity ofX. sagittifoliumleaf extract. Results showed that hydroethanolic extract ofX. sagittifoliumleaves (HEXs-L) exhibits cytotoxic effects against the immortalized line of human T-lymphocytic (Jurkat) and myelogenous (K562) leukemia cells, but not nontumor RAW 264.7 macrophages or NIH/3T3 fibroblasts. HEXs-L inhibited 50.3% of Jurkat cell proliferation, reducing by 20% cells in G2/M phase, but increasing cells in sub-G1 phase, thereby inducing apoptosis by 54%. In addition, HEXs-L inhibited NO production by 59%, as determined by Griess reaction, and chelated 93.8% of free Fe(II), as demonstrated by ferrozine assay. Phytochemical studies were carried out by ESI-MS, identifying apigenin di-C-glycosides as major compounds. Overall, this work revealed that leaf extract ofXanthosoma sagittifoliumpresented chelating activity andin vitroantitumor activity, arresting cell cycle and inducing apoptosis of leukemia cells, thus providing evidence that taioba leaves may have practical application in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document