scholarly journals A multi-criteria decision-making in turning process using the MAIRCA, EAMR, MARCOS and TOPSIS methods: A comparative study

2021 ◽  
Vol 16 (4) ◽  
pp. 443-456
Author(s):  
D.D. Trung ◽  
H.X. Thinh

Multi-criteria decision-making is important and it affects the efficiency of a mechanical processing process as well as an operation in general. It is understood as determining the best alternative among many alternatives. In this study, the results of a multi-criteria decision-making study are presented. In which, sixteen experiments on turning process were carried out. The input parameters of the experiments are the cutting speed, the feed speed, and the depth of cut. After conducting the experiments, the surface roughness and the material removal rate (MRR) were determined. To determine which experiment guarantees the minimum surface roughness and maximum MRR simultaneously, four multi-criteria decision-making methods including the MAIRCA, the EAMR, the MARCOS, and the TOPSIS were used. Two methods the Entropy and the MEREC were used to determine the weights for the criteria. The combination of four multi-criteria making decision methods with two determination methods of the weights has created eight ranking solutions for the experiments, which is the novelty of this study. An amazing result was obtained that all eight solutions all determined the same best experiment. From the obtained results, a recommendation was proposed that the multi-criteria making decision methods and the weighting methods using in this study can also be used for multi-criteria making decision in other cases, other processes.

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2998 ◽  
Author(s):  
Kubilay Aslantas ◽  
Mohd Danish ◽  
Ahmet Hasçelik ◽  
Mozammel Mia ◽  
Munish Gupta ◽  
...  

Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective optimization of micro-turning process parameters such as cutting speed, feed rate and depth of cut were performed by response surface method (RSM). Two important machining indices, such as surface roughness and material removal rate, were simultaneously optimized in the micro-turning of a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting tools. The overall results depict that the feed rate is the prominent factor that significantly affects the responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.


Author(s):  
César Oswaldo Aguilera-Ojeda ◽  
Alberto Saldaña-Robles ◽  
Agustín Vidal-Lesso ◽  
Israel Martínez-Ramírez ◽  
Eduardo Aguilera-Gómez

Abstract The surface finish of industrial components has an important role in their performance and lifetime. Therefore, it is crucial to find the cutting parameters that provide the best surface finish. In this work, an experimental study of the effect of cutting parameters on ultra-high molecular weight polyethylene (UHMWPE) by a turning process was carried out. Today, the UHMWPE polymer continues to find applications mainly in the automotive industry and biomechanics because it is resistant to impact and corrosive materials to use. A face-centered Central Composite Design (CCD) and Response Surface Methodology (RSM) were applied to evaluate the influence of the cutting speed (Vc), feed rate (f) and depth of cut (ap) of the turning operation on the Average Surface Roughness (Ra) and Material Removal Rate (MRR). Results allowed obtaining an adjusted multivariable regression model that describes the behavior of the Ra that depends on the cutting parameters in the turning process. The predictive model of Ra showed that it fits well with a correlation coefficient (R2) around 0.9683 to the experimental data for Ra. The ANOVA results for Ra showed that the feed is the most significant factor with a contribution of 42.3 % for the term f 2, while the speed and depth of cut do not affect Ra with contributions of 0.19% and 0.18%, respectively. A reduction of feed from 0.30 to 0.18 mm·rev−1 produces a decrease in surface roughness from 6.68 to 3.81 μm. However, if the feed continued to reduce an increase in surface roughness, a feed of 0.05 mm·rev−1 induces a surface roughness of 14.93 μm. Feeds less than 0.18 mm·rev−1 cause a heat generation during turning that increases the temperature in the process zone, producing surface roughness damage of the UHMWPE polymer. Also, the results for MRR demonstrated that all of the cutting parameters are significant with contributions of 31.4%, 27.4% and 15.4% to feed, speed, and depth of cut, respectively. The desirability function allowed optimizing the cutting parameters (Vc = 250 m·min−1, ap = 1.5 mm y f = 0.27 mm·rev−1) to obtain a minimum surface roughness (Ra = 4.3 μm) with a maximum material removal rate (MMR = 97.1 cm3·min−1). Finally, the predictive model of Ra can be used in the industry to obtain predictions on the experimental range analyzed, reducing the surface roughness and the manufacturing time of UHMWPE cylindrical components.


2018 ◽  
Vol 7 (1) ◽  
pp. 44-55 ◽  
Author(s):  
Dian Ridlo Pamuji ◽  
Muhammad Abdul Wahid ◽  
Abdul Rohman ◽  
Achmad As’ad Sonief ◽  
Moch Agus Choiron

A research was conducted for the optimization of the turning process st 60 tool steel with multiple performance characteristics based on the orthogonal array with Taguchi-WPCA method. Minimum Quantity Cooling Lubrication (MQCL) metode was applied as a coolant. The experimental studies were conducted under varying the cutting speed, feeding, depth of cut and type of coolant. The optimized multiple performance characteristics were surface roughness, and material removal rate. An orthogonal array, signal-to-noise ratio, grey relational analysis, weighted pricipal component analysis and analysis of variance were employed to study the multiple performance characteristics. Experimental results show that cutting speed gives the highest contribution for minimize of surface roughness and maximize of material removal rate, followed by feeding speed, type of coolant and depth of cut. The minimum of surface roughness and maximize of material removal rat could be obtained by using the values of cutting speed, feeding speed,  depth of cut and type of coolant of 172.95 m/minute, 0.053 mm/rev, 0.25 mm, and vegetable oil as a coolant respectively.


2021 ◽  
Vol 15 ◽  
pp. 127-135
Author(s):  
Nguyen Lam Khanh ◽  
Nguyen Van Cuong

Milling is a commonly used method in mechanical machining. This is considered to be the method for the highest productivity among cutting methods. Moreover, the quality of the machined surface is increasingly improved as well as the machining productivity is increasingly enhanced thanks to the development of machine tool and cutting tool manufacturing technology. Therefore, in each specific processing condition (about machine, tool and part material, and other conditions), specific studies are required to determine the value of technological parameters in order to improve productivity and machining accuracy. Only in this way can we take full advantage of the capabilities of modern equipment. The process parameters in the milling method in particular and in the machining and cutting methods in general can be easily adjusted by the machine operator as the parameters of the cutting parameters or the change of tool types. In this article, the combination of Taguchi and Proximity Indexed Value (PIV) methods is presented for multi-criteria decision making in milling. An experimental matrix was designed according to Taguchi method with five input parameters, including the insert materials (TiN, TiCN, and TiAlN), nose radius, cutting velocity, feed rate and depth of cut. The total number of experiments that were performed was twenty-seven. The workpiece used during the experiment was SCM440 steel. At each experiment, the surface roughness was measured and the Material Removal Rate (MRR) was calculated. The weights of these two parameters have been chosen by the decision maker on the basis of consultation with experts. The PIV method was applied to determine the experiment at which the minimum surface roughness and the maximum MRR were simultaneously guaranteed. In addition, the influence of input parameters on surface roughness was also found in this study.


2021 ◽  
Vol 8 ◽  
pp. 26
Author(s):  
Do Duc Trung

This paper presents a multi-criteria decision making (MCDM) for a turning process. An experimental process was performed according to the sequence of a matrix using the Taguchi method with nine experiments. The parameters including workpiece speed, feed rate, depth of cut, and nose radius were selected as the input variables. At each experiment, three cutting force components that were measured in the three directions X, Y, and Z, were Fx, Fy, and Fz, respectively. The value of Material Removal Rate (MRR) was also calculated at each experiment. The main purpose of this study is determination of an experiment in total performed experiments simultaneously ensuring the minimum Fx, Fy, and Fz and the maximum MRR. The Entropy method was applied to determine the weights for parameters Fx, Fx, Fx, and MRR. Eight MCDM methods were applied for multi-criteria decision making, this has not been performed in any studies. The implementation steps of each method were also presented in this paper. Seven ones of these eight methods determined the best experiment in total nine performed experiments. A new multi-criteria decision-making method as well as orientation for the further works were also proposed in this study.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


Author(s):  
Prof. Hemant k. Baitule ◽  
Satish Rahangdale ◽  
Vaibhav Kamane ◽  
Saurabh Yende

In any type of machining process the surface roughness plays an important role. In these the product is judge on the basis of their (surface roughness) surface finish. In machining process there are four main cutting parameter i.e. cutting speed, feed rate, depth of cut, spindle speed. For obtaining good surface finish, we can use the hot turning process. In hot turning process we heat the workpiece material and perform turning process multiple time and obtain the reading. The taguchi method is design to perform an experiment and L18 experiment were performed. The result is analyzed by using the analysis of variance (ANOVA) method. The result Obtain by this method may be useful for many other researchers.


Author(s):  
Sunil Dutta ◽  
NSK Reddy

Manufacturers in different sectors look for materials exhibiting good mechanical properties, high machinability, and superior surface integrity. The machinability of Mg alloys is one of the vital aspects which requires an exhaustive survey during their selection for different applications. The study examines the surface integrity of a fabricated AM alloy (Mg alloy with 7 wt%Al-0.9 wt%Mn) through dry turning. During the experiments, the input variables of turning viz. cutting speed( v), depth of cut (DOC), and feed( f) is altered and applied to the workpiece. The data obtained for the two response variables viz. surface roughness and microhardness accentuate the maximum influence of feed, followed by DOC and speed. For validation a two-stage methodology was adopted; In the first stage, the validation was done with the help of Analysis of variance (ANOVA); the results show the % contribution of feed, speed, and DOC on average roughness is 66.94%, 5.91%, and 27.23% and on microhardness is 47%, 8.3%, and 44.57%, respectively. Subsequently, in the second stage, the surface plots are drawn for both the response variables to ascertain the ANOVA outcomes; the shape of the plots corroborates the experimental and ANOVA results. The study results provide vital insights for parameter selection to get improved results on surface roughness and microhardness during machining of AM alloy.


2011 ◽  
Vol 199-200 ◽  
pp. 1958-1966 ◽  
Author(s):  
Somkiat Tangjitsitcharoen

The objective of this research is to propose a practical model to predict the in-process surface roughness during the turning process by using the cutting force ratio. The proposed in-process surface roughness model is developed based on the experimentally obtain result by employing the exponential function with six factors of the cutting speed, the feed rate, the rank angle the tool nose radius, the depth of cut, and the cutting force ratio. The multiple regression analysis is utilized to calculate the regression coefficients with the use of the least square method. The prediction accuracy of the in-process surface roughness model has been verified to monitor the in-process predicted surface roughness at 95% confident level. All those parameters have their own characteristics to the arithmetic surface roughness and the surface roughness. It has been proved by the cutting tests that the proposed and developed in-process surface roughness model can be used to predict the in-process surface roughness by utilizing the cutting force ratio with the highly acceptable prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document