scholarly journals Critical point Higgs inflation in the Palatini formulation

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Vera-Maria Enckell ◽  
Sami Nurmi ◽  
Syksy Räsänen ◽  
Eemeli Tomberg

Abstract We study Higgs inflation in the Palatini formulation with the renormalisation group improved potential in the case when loop corrections generate a feature similar to an inflection point. Assuming that there is a threshold correction for the Higgs quartic coupling λ and the top Yukawa coupling yt, we scan the three-dimensional parameter space formed by the two jumps and the non-minimal coupling ξ.The spectral index ns can take any value in the observationally allowed range. The lower limit for the running is αs> −3.5 × 10−3, and αs can be as large as the observational upper limit. Running of the running is small. The tensor-to-scalar ratio is 2.2×10−17< r < 2 × 10−5. We find that slow-roll can be violated near the feature, and a possible period of ultra-slow-roll contributes to the widening of the range of CMB predictions. Nevertheless, for the simplest tree-level action, the Palatini formulation remains distinguishable from the metric formulation even when quantum corrections are taken into account, because of the small tensor-to-scalar ratio.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jens O. Andersen ◽  
Magdalena Eriksson ◽  
Anders Tranberg

Abstract Inflation is often described through the dynamics of a scalar field, slow-rolling in a suitable potential. Ultimately, this inflaton must be identified with the expectation value of a quantum field, evolving in a quantum effective potential. The shape of this potential is determined by the underlying tree-level potential, dressed by quantum corrections from the scalar field itself and the metric perturbations. Following [1], we compute the effective scalar field equations and the corrected Friedmann equations to quadratic order in both scalar field, scalar metric and tensor perturbations. We identify the quantum corrections from different sources at leading order in slow-roll, and estimate their magnitude in benchmark models of inflation. We comment on the implications of non-minimal coupling to gravity in this context.


Author(s):  
Tom P. C. Schlösser ◽  
René M. Castelein ◽  
Pierre Grobost ◽  
Suken A. Shah ◽  
Kariman Abelin-Genevois

Abstract Purpose The complex three-dimensional spinal deformity in AIS consists of rotated, lordotic apical areas and neutral junctional zones that modify the spine’s sagittal profile. Recently, three specific patterns of thoracic sagittal ‘malalignment’ were described for severe AIS. The aim of this study is to define whether specific patterns of pathological sagittal alignment are already present in mild AIS. Methods Lateral spinal radiographs of 192 mild (10°–20°) and 253 severe (> 45°) AIS patients and 156 controls were derived from an international consortium. Kyphosis characteristics (T4–T12 thoracic kyphosis, T10–L2 angle, C7 slope, location of the apex of kyphosis and of the inflection point) and sagittal curve types according to Abelin-Genevois were systematically compared between the three cohorts. Results Even in mild thoracic AIS, already 49% of the curves presented sagittal malalignment, mostly thoracic hypokyphosis, whereas only 13% of the (thoraco) lumbar curves and 6% of the nonscoliosis adolescents were hypokyphotic. In severe AIS, 63% had a sagittal malalignment. Hypokyphosis + thoracolumbar kyphosis occurred more frequently in high-PI and primary lumbar curves, whereas cervicothoracic kyphosis occurred more in double thoracic curves. Conclusions Pathological sagittal patterns are often already present in curves 10°–20°, whereas those are rare in non-scoliotic adolescents. This suggests that sagittal ‘malalignment’ patterns are an integral part of the early pathogenesis of AIS.


2020 ◽  
Vol 12 (8) ◽  
pp. 1319
Author(s):  
Xiaofan Sun ◽  
Bingnan Wang ◽  
Maosheng Xiang ◽  
Liangjiang Zhou ◽  
Shuai Jiang

The Gaussian vertical backscatter (GVB) model has a pivotal role in describing the forest vertical structure more accurately, which is reflected by P-band polarimetric interferometric synthetic aperture radar (Pol-InSAR) with strong penetrability. The model uses a three-dimensional parameter space (forest height, Gaussian mean representing the strongest backscattered power elevation, and the corresponding standard deviation) to interpret the forest vertical structure. This paper establishes a two-dimensional GVB model by simplifying the three-dimensional one. Specifically, the two-dimensional GVB model includes the following three cases: the Gaussian mean is located at the bottom of the canopy, the Gaussian mean is located at the top of the canopy, as well as a constant volume profile. In the first two cases, only the forest height and the Gaussian standard deviation are variable. The above approximation operation generates a two-dimensional volume only coherence solution space on the complex plane. Based on the established two-dimensional GVB model, the three-baseline inversion is achieved without the null ground-to-volume ratio assumption. The proposed method improves the performance by 18.62% compared to the three-baseline Random Volume over Ground (RVoG) model inversion. In particular, in the area where the radar incidence angle is less than 0.6 rad, the proposed method improves the inversion accuracy by 34.71%. It suggests that the two-dimensional GVB model reduces the GVB model complexity while maintaining a strong description ability.


2018 ◽  
Vol 2018 (03) ◽  
pp. 029-029 ◽  
Author(s):  
Tommi Markkanen ◽  
Tommi Tenkanen ◽  
Ville Vaskonen ◽  
Hardi Veermäe

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Shuntaro Aoki ◽  
Hyun Min Lee ◽  
Adriana G. Menkara

Abstract We propose a new construction of the supergravity inflation as an UV completion of the Higgs-R2 inflation. In the dual description of R2-supergravity, we show that there appear dual chiral superfields containing the scalaron or sigma field in the Starobinsky inflation, which unitarizes the supersymmetric Higgs inflation with a large non-minimal coupling up to the Planck scale. We find that a successful slow-roll inflation is achievable in the Higgs-sigma field space, but under the condition that higher curvature terms are introduced to cure the tachyonic mass problems for spectator singlet scalar fields. We also discuss supersymmetry breaking and its transmission to the visible sector as a result of the couplings of the dual chiral superfields and the non-minimal gravity coupling of the Higgs fields.


2019 ◽  
Vol 62 (4) ◽  
pp. 263-269
Author(s):  
I. A. Pribytkov ◽  
S. I. Kondrashenko

In this paper, the development features of a single free jet of hightemperature nitrogen interacting with a flat surface were studied. Calculation of the heat exchange process during heating by the attacking jets is very difficult to implement analytically due to complexity of the gas-dynamic processes occurring both in a single jet and in a system of jets interacting with the metal. The computational difficulties are aggravated by the fact that when interacting with the surface the jet as such disappears. The flat (fan) flow interacts with the surface: form, aerodynamic properties and thermal state of the flow strongly differ from those of the original jet. The studies were conducted on the basis of numerical simulation in the FloEFD software and computing complex for multiphysical simulation based on solution of the equations of gas dynamics and heat transfer. The solved system of equations consisted of Navier-Stokes equations, equations of energy and continuity and was supplemented by k – ε turbulence model. A three-dimensional model was developed for simulation, the necessary properties, initial and boundary conditions were specified. In the study of aerodynamics of a single high-temperature jet interacting with the surface, the main defining values were: nitrogen flow rate from the nozzle U0 , nitrogen temperature T, internal diameter of the nozzle d0 , distance from the nozzle section to the surface h, distance from the critical point (point of intersection of the jet axis with the surface) along the flow radius r. Data on the gas velocity decrease as the jet develops due to the loss of initial energy to engage the motionless surrounding gas in motion, is presented. The studies have shown that increase in the initial velocity of gas outflow brings the area of higher velocities closer to the surface both in the jet itself and in the fan jet. This factor contributes to heat transfer intensification. In addition, high speeds increase the total thickness of the fan flow and reduce the thickness of hydrodynamic boundary layer, which increases with distance from the critical point.


1995 ◽  
Vol 05 (03) ◽  
pp. 673-699 ◽  
Author(s):  
NÚRIA FAGELLA

The complexification of the standard family of circle maps Fαβ(θ)=θ+α+β+β sin(θ) mod (2π) is given by Fαβ(ω)=ωeiαe(β/2)(ω−1/ω) and its lift fαβ(z)=z+a+β sin(z). We investigate the three-dimensional parameter space for Fαβ that results from considering a complex and β real. In particular, we study the two-dimensional cross-sections β=constant as β tends to zero. As the functions tend to the rigid rotation Fα,0, their dynamics tend to the dynamics of the family Gλ(z)=λzez where λ=e−iα. This new family exhibits behavior typical of the exponential family together with characteristic features of quadratic polynomials. For example, we show that the λ-plane contains infinitely many curves for which the Julia set of the corresponding maps is the whole plane. We also prove the existence of infinitely many sets of λ values homeomorphic to the Mandelbrot set.


2004 ◽  
Vol 19 (07) ◽  
pp. 497-509 ◽  
Author(s):  
J. SANTIAGO

We review the very stringent lower bounds on the string scale that arise from flavor considerations in models with intersecting branes. Despite the absence of a realistic flavor structure at tree level, flavor changing interactions induce a non-trivial pattern of fermion masses and mixing angles when quantum corrections are taken into account. The resulting realistic theory of flavor allows us to constrain, in an unambiguous way, the string scale up to levels difficult to reconcile non-supersymmetric models.


Sign in / Sign up

Export Citation Format

Share Document