scholarly journals Arsenic Trioxide Suppresses Growth of BCR-ABL1 Positive Cells with "Gatekeeper" or Compound Mutation

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4346-4346
Author(s):  
Afsar Ali Mian ◽  
Hadiqa Raees ◽  
Sujjawal Ahmad ◽  
Oliver Ottmann ◽  
El-Nasir M A Lalani

Abstract Introduction: Chronic myeloid leukemia (CML) and 30% of adult acute lymphatic leukemia (ALL) are characterized by the Philadelphia chromosome (Ph +), having a (9;22) chromosomal translocation. The BCR-ABL1 fusion protein is the hallmark of Ph + leukemia. BCR-ABL1 is characterized by constitutively activated ABL1 tyrosine kinase activity that determines its transformation potential. Tyrosine kinase inhibitors (TKI) have greatly improved the overall prognosis of these diseases. However, unsatisfactory responses in advanced disease stages, resistance and long-term tolerability of BCR-ABL1 inhibitors represent major clinical problems. The most important resistance mechanism against TKIs is the acquisition of point mutations within the BCR-ABL1 kinase domain that impair drug binding, restoring the oncoprotein's constitutively active tyrosine kinase activity. The selection of leukemic clones driven by BCR-ABL1 harboring point mutations, such as the E255K, Y253F/H (P-loop), H396R (activation loop) or the T315I (gatekeeper). Second- and third generation TKIs such as nilotinib, dasatinib, and ponatinib effectively overcome point mutation-mediated resistance. Ponatinib is the only U.S. Food and Drug Administration approved TKI with activity against all known BCR-ABL1 point mutations, including BCR-ABL1-T315I. However, the emergence of compound mutations (two mutations within the same BCR-ABL1 allele) has been linked to resistance to all approved TKIs, including ponatinib, posing a clinical challenge with limited treatment options. The anti-cancer agent arsenic trioxide (ATO) has been used to treat patients with acute promyelocytic leukemia (APL). APL patients respond very well to ATO therapy and achieve complete remission, possibly through induction of apoptosis and differentiation. In addition, it has been demonstrated that combined treatment of ATO with interferon or nilotinib significantly suppressed cell proliferation. However, the potential effects of ATO on BCR-ABL1 mutations and especially on compound mutation is not apparent. This study aimed to investigate the role of ATO in BCR-ABL1 resistant mutations, including compound mutation in Ph + leukemias. Methods: We undertook preclinical evaluation of ATO and compared it with approved TKIs e.g. imatinib, nilotinib, dasatinib, ponatinib and ABL inhibitor asciminib, in vitro models of CML and primary patient-derived long term cultures (PD-LTC) of Ph + ALL patients with or without mutation. The effects on mutational resistance were investigated in Ba/F3 cells expressing BCR-ABL1 with T315I mutation and T315I-E255K mutation. For non-mutational resistance, we used PD-LTCs from Ph + ALL patients with different levels of non-mutational drug resistance. Cell proliferation was assessed by XTT. Results: ATO efficiently inhibited the growth of all PD-LTCs in cellular assays at dosages of 200-500nM. It also suppressed the growth of Ph + PD-LTC with non- mutational resistance (BV) and the BCR-ABL1-T315I positive PD-LTC (KO) in this dosage range. In all modelsWe treated Ba/F3 cells expressing native BCR-ABL1, BCR-ABL1-T315I mutation and BCR-ABL1-T315I-E255K (compound mutation) with increasing concentrations of imatinib (250, 500 and 1000nM), nilotinib (100, 200 and 400nM), dasatinib (10, 25 and 50nM), ponatinib (10, 50 and 100nM), asciminib) (ABL allosteric inhibitor) (5, 10 and 20nM) and ATO (0.5, 1.0 and 2.0 µM). We found that all the inhibitors significantly inhibited the proliferation of Ba/F3 cells expressing wild type BCR-ABL1 in a dose-dependent manner. In contrast, the growth of Ba/F3 cells expressing BCR-ABL1-T315I was inhibited by increasing concentration of ponatinib, asciminib and ATO. ATO potently inhibited the most challenging mutation (T315I-E255K) with a clinically relevant concentration (IC50 250nM). All approved ABL kinase inhibitors (AKIs) and allosteric inhibitors like asciminib could not inhibit the growth of Ba/F3 cells expressing BCR-ABL1 compound mutation. Conclusions: Our findings indicate that ATO significantly suppressed the proliferation of cells expressing non-mutated BCR-ABL1, single and compound mutated BCR-ABL1. These results support including ATO in treating patients with Ph + leukemias having BCR-ABL1 resistant single or compound mutati Disclosures Ottmann: Novartis: Honoraria; Amgen: Honoraria, Research Funding; Celgene/BMS: Honoraria, Research Funding; Fusion: Honoraria; Incyte: Honoraria, Research Funding.

1998 ◽  
Vol 274 (5) ◽  
pp. G863-G870 ◽  
Author(s):  
Adhip P. N. Majumdar ◽  
James R. Goldenring

In Fischer 344 rats, induction of gastric mucosal proliferative activity, whether the result of aging or injury or occurring after administration of epidermal growth factor, gastrin, or bombesin, is associated with a rise in tyrosine kinase activity and tyrosine phosphorylation of several mucosal proteins, including a protein with a molecular mass of 53–55 kDa. We hypothesized that this phosphotyrosine membrane protein (referred to as pp55) may play a role in regulating gastric mucosal cell proliferation and differentiation. Purification and subsequent immunoprecipitation studies now show that pp55 is a tyrosine kinase. In addition, the enzyme activity in the gastric mucosa is found to be fourfold higher in aged rats than in young rats. Incubation of gastric mucosal membranes with transforming growth factor-α (2 × 10−8 M) stimulates tyrosine kinase activity of pp55. Immuolocalization studies reveal that pp55 immunoreactivity is predominantly present in mucous cells that are located just above the proliferative zone and spasmolytic peptide-immunoreactive mucous neck cells. Tyrosine kinase activity as well as expression of pp55 are also greatly increased in the gastric mucosa after hypertonic saline-induced injury, a condition that results in stimulation of surface mucosal cell proliferation and differentiation. Our current data suggest that pp55 is a tyrosine kinase, likely localized to pre-surface cells. The presence of pp55 in pre-surface mucous cells and the expression and tyrosine kinase activity of this protein, which can be stimulated during mucosal cell proliferation and differentiation, strongly suggest a role for pp55 in differentiation of gastric surface mucous cells.


2001 ◽  
Vol 155 (3) ◽  
pp. 427-438 ◽  
Author(s):  
Daniel M. Suter ◽  
Paul Forscher

Tyrosine kinase activity is known to be important in neuronal growth cone guidance. However, underlying cellular mechanisms are largely unclear. Here, we report how Src family tyrosine kinase activity controls apCAM-mediated growth cone steering by regulating the transmission of traction forces through receptor–cytoskeletal linkages. Increased levels of tyrosine phosphorylation were detected at sites where beads coated with apCAM ligands were physically restrained to induce growth cone steering, but not at unrestrained bead binding sites. Interestingly, the rate and level of phosphotyrosine buildup near restrained beads were decreased by the myosin inhibitor 2,3-butanedione-2-monoxime, suggesting that tension promotes tyrosine kinase activation. While not affecting retrograde F-actin flow rates, genistein and the Src family selective tyrosine kinase inhibitors PP1 and PP2 strongly reduced the growth cone's ability to apply traction forces through apCAM–cytoskeletal linkages, assessed using the restrained bead interaction assay. Furthermore, increased levels of an activated Src family kinase were detected at restrained bead sites during growth cone steering events. Our results suggest a mechanism by which growth cones select pathways by sampling both the molecular nature of the substrate and its ability to withstand the application of traction forces.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 438-438 ◽  
Author(s):  
Xiaoyan Jiang ◽  
Kyi Min Saw ◽  
Allen Eaves ◽  
Connie Eaves

Abstract Growing evidence indicates that the therapeutic potential of imatinib mesylate (IM) for the treatment of CML may be limited initially by a relative innate resistance of the leukemic stem cells and eventually by an accumulation of cells with BCR-ABL tyrosine kinase domain mutations. We now show that the amount and tyrosine kinase activity of p210-BCR-ABL in the most primitive and relatively IM-unresponsive lin−CD34+CD38− CML cells is 3 to 10-fold higher than in the majority of the lin−CD34+CD38+ CML progenitors (n=3). These results confirm previous BCR-ABL transcript data and identify elevated p210-BCR-ABL expression to be a likely important factor in the characteristic IM-insensitivity of very primitive CML cells. To determine whether in vivo, CML stem cells also accumulate gene mutations affecting the BCR-ABL kinase domain, cDNAs were prepared from RNA extracts of purified lin−CD34+CD38− cells isolated from 3 chronic phase patients that had not received IM therapy. Bidirectional sequencing of individually cloned cDNAs from these samples revealed BCR-ABL kinase domain mutations in 2 of the 3 patients at frequencies of 10% (1/10), 20% (2*/10,*identical mutations). Incubation of these lin−CD34+CD38− cells in vitro for 2–3 wk ± a high concentration of IM (up to 10 μM, which was sufficient to reduce the tyrosine kinase activity in the input cells by 70±12% and in their 2 wk progeny by 10±5%) selected a subpopulation of more differentiated and completely IM-resistant cells. This was shown in Western blots by the inability of 10 μM IM to reduce either their p210-BCR-ABL tyrosine kinase activity or CrkL phosphorylation and in methylcellulose assays ±5 μM IM. As predicted, IM-selected cells showed a higher frequency of kinase domain mutations (13–20% vs 0–20% of cDNA clones analyzed from 3 wk cells cultured ±IM). Analysis of individual colonies produced from CFCs in the cultured cells showed all (21/21) colonies from IM-selected cells had mutations vs 50% (5/10) in those cultured without IM. The total frequency of mutant cDNAs detected was also increased in the IM-resistant cells (35–55% vs 10–25% mutant cDNAs in selected vs control cells). Interestingly, in most cases, both wild-type and mutant cDNAs were identified in the same colony, indicating de novo generation of mutations in vitro. Overall, >50 different mutations were identified. These included 10 point mutations previously associated with clinical IM resistance (including G250 and T315), another 13 point mutations previously identified in a comprehensive mutational screen, and >20 previously undescribed mutations. Several of the latter affect the critical region of the P loop, the c-helix and the activation loop and would be predicted to confer significant IM resistance. To investigate the possibility that the observed genomic instability of very primitive CML cells might be related to their elevated innate p210-BCR-ABL activity, BCR-ABL transcript levels in individual IM-selected, fully resistant and control (similarly treated but no IM exposure) colonies were compared. This showed that BCR-ABL transcripts were ~20-fold higher (P<0.05) in the resistant colonies (30 assessed from 3 patients). These findings suggest that the increased BCR-ABL expression and activity that uniquely characterizes the most primitive CML cells may contribute not only to their innate insensitivity to IM but also to a deregulation of genomic stability leading to the emergence of IM-resistant mutants and other subclones associated with disease progression.


1999 ◽  
Vol 145 (6) ◽  
pp. 1209-1218 ◽  
Author(s):  
Donna J. Osterhout ◽  
Amy Wolven ◽  
Rebecca M. Wolf ◽  
Marilyn D. Resh ◽  
Moses V. Chao

In the central nervous system, myelination of axons occurs when oligodendrocyte progenitors undergo terminal differentiation and initiate process formation and axonal ensheathment. Although it is hypothesized that neuron-oligodendrocyte contact initiates this process, the molecular signals are not known. Here we find that Fyn tyrosine kinase activity is upregulated very early during oligodendrocyte progenitor cell differentiation. Concomitant with this increase is the appearance of several tyrosine phosphorylated proteins present only in differentiated cells. The increased tyrosine kinase activity is specific to Fyn, as other Src family members are not active in oligodendrocytes. To investigate the function of Fyn activation on differentiation, we used Src family tyrosine kinase inhibitors, PP1 and PP2, in cultures of differentiating oligodendrocyte progenitors. Treatment of progenitors with these compounds prevented activation of Fyn and reduced process extension and myelin membrane formation. This inhibition was reversible and not observed with related inactive analogues. A similar effect was observed when a dominant negative Fyn was introduced in progenitor cells. These findings strongly suggest that activation of Fyn is an essential signaling component for the morphological differentiation of oligodendrocytes.


2021 ◽  
Author(s):  
Naoki Yamamoto ◽  
Jiro Kikuchi ◽  
Yusuke Furukawa ◽  
Naoya Shibayama

We report expression and purification of a FLT3 protein with ITD mutation (FLT3-ITD) with a steady tyrosine kinase activity using a silkworm-baculovirus system, and its application as a fast screening system of tyrosine kinase inhibitors. The FLT3-ITD protein was expressed in Bombyx mori L. pupae infected by gene-modified nucleopolyhedrovirus, and was purified as an active state. We performed an inhibition assay using 17 potential kinase inhibitors, and succeeded in identifying two potent inhibitors for FLT3-ITD. The result has paved the way for screening FLT3-ITD inhibitors in a fast and easy manner, and also for structural studies.


1993 ◽  
Vol 264 (1) ◽  
pp. C246-C250 ◽  
Author(s):  
P. S. Matsumoto ◽  
A. Ohara ◽  
P. Duchatelle ◽  
D. C. Eaton

Insulin increases epithelial Na+ reabsorption, and many of its actions involve tyrosine kinase. We used tyrosine kinase inhibitors to examine the role of tyrosine kinase in the action of insulin. Pretreatment of Na+ transporting cells with tyrosine kinase inhibitors attenuates the subsequent action of insulin, suggesting that the action of insulin on epithelial Na+ transport involves tyrosine kinase activity. In addition to their effect on insulin-induced Na+ transport, the tyrosine kinase inhibitors also significantly reduce Na+ transport in Na(+)-transporting epithelial cells, suggesting that there is a significant tonic tyrosine kinase activity that modulates epithelial Na+ transport. Using patch-clamp methods, we found that one inhibitor, genistein, reduces the number of active Na+ channels in cell-attached patches without significantly affecting the open probability of any remaining channels. The effects of the tyrosine kinase inhibitors are not due to inhibition of protein kinase A (PKA), since H89, a PKA inhibitor, does not affect Na+ transport of control cells (as the tyrosine kinase inhibitors do), and the tyrosine kinase inhibitor, genistein or tyrphostin 23, does not alter the stimulation of ion transport by 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, a membrane-permeable adenosine 3',5'-cyclic monophosphate analogue (as H89 does).


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3236-3236
Author(s):  
Marcus Liebermann ◽  
Daniela Hoeller ◽  
Susanne Badura ◽  
Tamara Tesanovic ◽  
Hubert Serve ◽  
...  

Abstract Abstract 3236 Bcr-Abl is a leukemogenic fusion gene that by itself is sufficient for cellular transformation (Daley et al.) and is the hallmark of chronic myeloid leukemia and Philadelphia chromosome positive (Ph+) ALL. The Bcr-Abl fusion protein is a constitutively active tyrosine kinase (TK) which disrupts multiple cellular signalling pathways controlling apoptosis, cell cycle, proliferation and DNA repair. In Ph+ ALL, a subtype of ALL with a particularly poor prognosis, targeted inhibition of Bcr-Abl activity by Abl kinase inhibitors such as imatinib has improved treatment outcome but has not abrogated the frequent development of clinical resistance. In addition to mutations in the Bcr-Abl tyrosine kinase domain (TKD), it has become apparent that other resistance mechanisms contribute to disease progression. The activity of proteins involved in the above-mentioned signalling pathways and possibly resistance to TK inhibitors (TKI) is controlled at least partially by posttranslational modifications such as phosphorylation, which is regulated by the balance between kinases and protein tyrosine phosphatases (PTP). We previously showed that PTP1B is a negative regulator of Bcr-Abl-mediated transformation and modulates sensitivity to the TKI imatinib (Koyama et al). We hypothesized that other phosphatases for which Bcr-Abl is a substrate may also contribute to resistance, one candidate being Suppressor of T-cell receptor Signalling 1 (STS-1), which negatively regulates the endocytosis of receptor TK involved in a variety of hematologic malignancies. It was the aim of this study to determine whether: i) Bcr-Abl is a substrate of STS-1 ii) STS-1 is able to dephosphorylate Bcr-Abl iii) expression of STS-1 reduces the proliferation of Bcr-Abl expressing cells by inhibiting Bcr-Abl kinase activity iv) the level of STS-1 expression modulates the sensitivity of Bcr-Abl positive cells to TKI In order to answer these questions, we used 293T cells, a human primary embryonal kidney cell line, and the IL3-dependent murine pro B cell line Ba/F3. Both cell lines were modified with constructs encoding both forms of Bcr-Abl (p185/p210) and Sts-1. For experiments with endogenous Bcr-Abl (p185) and Sts-1 we used Sup B15 cells, a human B cell precursor leukemia, and its TKI-resistant subline (Sup B15 RT), which was generated in our lab and is highly resistant not only to imatinib but also to 2nd generation TKIs (Nilotinib & Dasatinib), with no evidence of TKD mutations or transcriptional up-regulation of Bcr-Abl. In all above described cell lines the interaction between Bcr-Abl and Sts-1 could be shown in an overexpressed system (293T & Ba/F3) and on an endogenous level (Sup B15 & Sup B15 RT) by using co-IPs followed by SDS-PAGE and Western blotting. The functional relevance was examined by testing the ability of Sts-1 to dephosphorylate Bcr-Abl. Complete dephosphorylation of Bcr-Abl was shown for p185bcr-abl and p210bcr-abl in 293T cells. To verify that the functional activity was also present in hematopoietic cells, we analyzed the ability of Sts-1 to dephosphorylate Bcr-Abl in Ba/F3 and Sup B15 cells. Dephosphorylation was observed in both cell lines but was less pronounced than in 293T cells. We therefore more closely examined the most important tyrosine (Tyr) residues of Bcr-Abl and identified Tyr245 and Tyr412 as the major targets of Sts-1. Phosphorylation of Tyr245 and Tyr412 was decreased by ∼60% in Ba/F3 cells and ∼39% in Sup B15 cells. These two residues are known to be important for regulating cell proliferation, survival and cell motility. In a competitive proliferation assay in the absence of IL3, the proliferation rate of BA/F3 cells infected with Bcr-Abl and Sts – 1 was reduced compared to a Bcr-Abl infected control population. When treated with imatinib the Sts-1 expressing cells showed an approximately 5-fold reduced proliferation rate compared to cells lacking Sts-1, or to imatinib-resistant cells harbouring the Bcr-Abl “gatekeeper mutation” T315I. The expression level of Sts-1 was found to be approximately 3-fold lower in the Sup B15 RT compared to the WT cell line. Regulation appeared to occur at the transcriptional level as shown by quantitive RT-PCR. These results show that Bcr-Abl is a substrate of Sts-1, that this phosphatase modulates Bcr-Abl kinase activity and may abrogate the response to TKI. This suggests that phosphatases may contribute to the development of clinical resistance of Ph+ leukemias to TKIs. Disclosures: Ottmann: Novartis: Honoraria, Research Funding; BMS: Honoraria, Research Funding.


Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S16-S17 ◽  
Author(s):  
Andrew F. Giusti ◽  
Kathy R. Foltz ◽  
Laurinda. A. Jaffe

A common early feature in the activation of all eggs during fertilisation is an increase in the level of intra-cellular free calcium (Ca2+) that, in most species, propagates as a wave across the egg (reviewed in Strieker, 1999). In echinoderms, this Ca2+ release is the result of a signal transduction cascade that requires phospholipase Cγ (PLCγ)-mediated production of inositol trisphosphate (IP3) (Carroll et al., 1997, 1999). PLCγ is most commonly regulated by tyrosine phosphorylation (Rhee & Bae, 1997), indicating that a tyrosine kinase is a likely upstream regulator of PLCγ enzymatic activity at fertilisation. In support of this hypothesis, an increase in tyrosine kinase activity and an increase in tyrosine-phosphorylated proteins at fertilisation has been observed in echinoderm eggs (Satoh & Garbers, 1985; Ciapa & Epel, 1991; Kinsey, 1997). Moreover, the tyrosine kinase inhibitors genistein (Shen et al., 1999) and PP1 (Abassi et al., 2000) have been used to show that in sea urchin eggs a tyrosine kinase activity is required for normal Ca2+ release in response to fertilisation.In eggs of the starfish Asterina miniata, a Src-type tyrosine kinase has been identified as a potential regulator of PLCγ activity at fertilisation (Giusti et al., 1999a). This kinase exhibits a rapid fertilisation-dependent association specifically with the Src Homology 2 (SH2) domains of PLCγ. Moreover, the timing of this association correlates with an increase in the tyrosine kinase activity bound to the PLCγ SH2 domains, and neither the Src kinase nor the associated kinase activity was observed to associate with the PLCγ SH2 domains after treating eggs with the calcium ionophore A23187 (Giusti et al., 1999a). These data identify an egg Src family kinase as a potential upstream regulator of PLCγ during starfish egg fertilisation.


1997 ◽  
Vol 83 (4) ◽  
pp. 756-761 ◽  
Author(s):  
Arunkumar B. Deora ◽  
Michelle B. Miranda ◽  
S.G. Anand Rao

Aims and background K562 cells are growth factor independent and neither function as stem cells nor differentiate into functional end cells. They are blast cells. There is evidence that the constitutively expressed bcr-abl tyrosine kinase might be responsible for the maintenance of the blast state of CML cells. We have studied the effect of two tyrosine kinase inhibitors, quercetin and genistein, on K562 cells. Methods K562 cells were treated with quercetin/genistein for a period of 72 hrs and then subjected to staining for apoptosis and erythroid differentiation and Western blotting with c-abl and phosphotyrosine monoclonal antibodies. Results The IC50 value was found to be 9.2 μg/ml for quercetin and 11.8 μg/ml for genistein. Quercetin-treated cells did not show any differentiation but showed 68% apoptosis as compared to 7% in control. Genistein-treated cells showed 16% apoptosis and 15% erythroid differentiation. Quercetin reduced the level of p210 by 74% and its phosphotyrosine content by 67.6%. Genistein reduced p210 by 77.8% and its phosphotyrosine content by 16%. Conclusion Both quercetin and genistein are able to down-modulate the tyrosine kinase activity of p210 as well as bring about a decrease in the content of the protein with different effects: quercetin induced apoptosis while genistein brought about both differentiation and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document