scholarly journals INFLUENCE OF HOMEOSTATIC CYTOKINES – IL-7 AND IL-15 ON T-REGULATORY CELLS IN VITRO

2021 ◽  
Vol 23 (4) ◽  
pp. 671-676
Author(s):  
D. V. Shevyrev ◽  
V. A. Kozlov

Cytokines IL-7 and IL-15 are the most important humoral factors providing T-conventional cell pool reconstitution during homeostatic proliferation caused by lymphopenia. However, whether these cytokines can provide homeostatic maintenance and proliferation of T-regulatory (Treg) cells is largely unknown. Considering the association between homeostatic proliferation and the development of autoimmunity, we decided to investigate the ability of these factors to cause differentiation of Treg-cells into Th17-lymphocytes. Therefore, the purpose of this study was to investigate the influence of humoral factors of homeostatic proliferation (IL-7 and IL-15) on Treg-cells in vitro. The study used peripheral blood sampled from 22 healthy donors. PBMC fraction was isolated by Ficoll density gradient centrifugation. Proliferation was induced by IL-7, IL-15, and by a combination of IL-2 with anti-CD3-antibodies. The proliferation intensity of Tregs was evaluated by flow cytometry using CFSE in PBMC cultures by phenotype CD3+CD4+CD25+FoxP3+ and in the previously purified population of CD3+CD4+CD25+CD127lo-cells. In this case Treg-cells were obtained by immunomagnetic separation from PBMCs using a MACS Treg Isolation Kit. Also, the RORyt expression in CD3+CD4+CD25+FoxP3+-cells was evaluated during cultivation. Here, we have shown that IL-7 and IL-15 could support Treg-cells by number and phenotype. Also, we revealed that these factors provide FoxP3 expression in Treg-cells; meanwhile, stimulation with IL-2 + anti-CD3 can also cause induction of FoxP3 expression de novo in conventional CD4+ cells. Also, we have shown that IL-7 and IL-15 can cause lower-intensity proliferation of Treg-cells in comparison with IL-2 + anti-CD3. Herewith homeostatic cytokines didn’t have the ability to induce RORyt expression in both T-regulatory cells and CD4+ conventional T-lymphocytes. Thus, it has been shown that IL-7 and IL-15 can potentially participate in maintaining the total pool of Treg-cells during lymphopenia, when IL-2 deficiency occurs, without causing the induction of RORyt expression. However, how homeostatic cytokines affect the functional activity of Treg-cells remains unclear and requires further investigation. 

2019 ◽  
Vol 18 (1) ◽  
pp. 286-293
Author(s):  
D. V. Shevyrev ◽  
E. A. Blinova ◽  
V. A. Kozlov

Aim. The aim of this study was the investigation of the influence of humoral factors of homeostatic proliferation IL-7 and IL-15 on T-regulatory cells in healthy donors.Materials and methods. The study included 15 conditionally healthy donors. Phenotyping and evaluation of expression changes of transcription factor FoxP3 and the main functional molecules on T-regulatory cells such as PD-L1, CTLA-4 and HLA-DR during cultivation under IL-7, IL-15 and anti-CD3 stimulation combined with IL-2 were performed by flow cytometry. Also, we estimated proliferation intensity of T-regulatory cells in the course of cultivation.Results. We revealed that humoral factors of homeostatic proliferation can effectively support a pool of T-regulatory cells during cultivation by number and phenotype and can maintain expression of important molecules such as PD-L1 and HLA-DR on regulatory T-cell surface. In addition, our study showed that IL-7 and IL-15 can cause relatively low T-regulatory cells proliferation in comparison to CD4+- lymphocytes.Conclusion. The observed ability of homeostatic proliferation factors to maintain T-regulatory cells pool presumably can play an important role in lymphopenic conditions when the number of effector cells is decreased and the insufficiency of interleukin IL-2 is observed, which plays a primary role in the homeostasis of T-regulatory cells in normal conditions.


2011 ◽  
Vol 208 (10) ◽  
pp. 2069-2081 ◽  
Author(s):  
Jeffrey VanValkenburgh ◽  
Diana I. Albu ◽  
Chandra Bapanpally ◽  
Sarah Casanova ◽  
Danielle Califano ◽  
...  

Dysregulated CD4+ T cell responses and alterations in T regulatory cells (Treg cells) play a critical role in autoimmune diseases, including inflammatory bowel disease (IBD). The current study demonstrates that removal of Bcl11b at the double-positive stage of T cell development or only in Treg cells causes IBD because of proinflammatory cytokine-producing CD4+ T cells infiltrating the colon. Provision of WT Treg cells prevented IBD, demonstrating that alterations in Treg cells are responsible for the disease. Furthermore, Bcl11b-deficient Treg cells had reduced suppressor activity with altered gene expression profiles, including reduced expression of the genes encoding Foxp3 and IL-10, and up-regulation of genes encoding proinflammatory cytokines. Additionally, the absence of Bcl11b altered the induction of Foxp3 expression and reduced the generation of induced Treg cells (iTreg cells) after Tgf-β treatment of conventional CD4+ T cells. Bcl11b bound to Foxp3 and IL-10 promoters, as well as to critical conserved noncoding sequences within the Foxp3 and IL-10 loci, and mutating the Bcl11b binding site in the Foxp3 promoter reduced expression of a luciferase reporter gene. These experiments demonstrate that Bcl11b is indispensable for Treg suppressor function and for maintenance of optimal Foxp3 and IL-10 gene expression, as well as for the induction of Foxp3 expression in conventional CD4+ T cells in response to Tgf-β and generation of iTreg cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1345-1345
Author(s):  
Antonio Curti ◽  
Valentina Salvestrini ◽  
Michela Aluigi ◽  
Sara Trabanelli ◽  
Emanuela Ottaviani ◽  
...  

Abstract Indoleamine 2,3-dioxygenase (IDO) enzyme, which catalyzes the conversion of tryptophan into kynurenine, has been identified as a novel immunosuppressive agent by inhibiting T-cell proliferation and is involved in tolerance induction to tumors. We have recently shown that IDO protein is constitutively expressed in a significant subset of newly diagnosed acute myeloid leukemia (AML) patients, resulting in tryptophan catabolism along the kynurenine pathway and in the inhibition of allogeneic T-cell proliferation. Moreover, we demonstrated that IDO-expressing AML cells are capable to promote the differentiation of new CD4+CD25+Foxp3+ T regulatory cells (Treg cells). AML cells may be differentiated into leukemic dendritic cells (AML-DCs) which have increased immunogenicity and may be used as vaccine against leukemia. We in vitro generated DCs from 7 AML samples according to standard procedures and tested IDO expression and activity. At baseline, 5/7 AML samples expressed IDO, whereas 2/7 did not. After differentiation into DCs, IDO+ AML samples showed an up-regulation of IDO mRNA and protein, and IDO− AML cells turned positive. IDO-expressing AML-DCs were capable to catabolize tryptophan into kynurenine metabolite and, functionally, they inhibited allogeneic T-cell proliferation through an IDO-dependent mechanism. Similarly to undifferentiated IDO+ AML blasts, IDO-expressing AML-DCs induced a population of CD4+CD25+Foxp3+ Treg cells, which were capable to suppress in vitro allogeneic naïve T-cell proliferation. These data identify IDO-mediated catabolism as a general tolerogenic mechanism in AML cells, including AML-DCs and raise several concerns for the use of AML-DCs as cellular vaccine against leukemia.


Blood ◽  
2009 ◽  
Vol 114 (24) ◽  
pp. 5003-5006 ◽  
Author(s):  
Raewyn Broady ◽  
Jie Yu ◽  
Megan K. Levings

Abstract Several recent reports have suggested that in vitro exposure of CD4+ T cells to rabbit antithymocyte globulin (rATG), which is commonly used to prevent and treat graft-versus-host disease and allograft rejection, is an effective method to induce CD4+CD25+FOXP3+ T regulatory cells (Tregs). We and others, however, have shown that FOXP3 is also expressed in activated T cells. We therefore investigated whether the induction of FOXP3 expression by rATG resulted in a stable population of suppressive Tregs. We found that exposure of peripheral blood mononuclear cells (PBMCs) or conventional T cells to rATG resulted in induction of transient rather than stable expression of CD25 and FOXP3. Furthermore, rATG-treated T effector cells acquired neither an immunosuppressive profile of cytokine production nor suppressive capacity, even at the time of maximal FOXP3 expression. These findings indicate that the notion that rATG can be used to induce Tregs in vitro for cellular therapy in vivo should be re-evaluated.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Moein Dehbashi ◽  
Zohreh Hojati ◽  
Majid Motovali-bashi ◽  
Mazdak Ganjalikhani-Hakemi ◽  
Akihiro Shimosaka ◽  
...  

AbstractCancer recurrence presents a huge challenge in cancer patient management. Immune escape is a key mechanism of cancer progression and metastatic dissemination. CD25 is expressed in regulatory T (Treg) cells including tumor-infiltrating Treg cells (TI-Tregs). These cells specially activate and reinforce immune escape mechanism of cancers. The suppression of CD25/IL-2 interaction would be useful against Treg cells activation and ultimately immune escape of cancer. Here, software, web servers and databases were used, at which in silico designed small interfering RNAs (siRNAs), de novo designed peptides and virtual screened small molecules against CD25 were introduced for the prospect of eliminating cancer immune escape and obtaining successful treatment. We obtained siRNAs with low off-target effects. Further, small molecules based on the binding homology search in ligand and receptor similarity were introduced. Finally, the critical amino acids on CD25 were targeted by a de novo designed peptide with disulfide bond. Hence we introduced computational-based antagonists to lay a foundation for further in vitro and in vivo studies.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jie Yang ◽  
Yiming Yang ◽  
Huahua Fan ◽  
Hejian Zou

TGF-β-induced regulatory T cells (iTregs) retain Foxp3 expression and immune-suppressive activity in collagen-induced arthritis (CIA). However, the mechanisms whereby transferred iTregs suppress immune responses, particularly the interplay between iTregs and dendritic cells (DCs)in vivo, remain incompletely understood. In this study, we found that after treatment with iTregs, splenic CD11c+DCs, termed “DCiTreg,” expressed tolerogenic phenotypes, secreted high levels of IL-10, TGF-β, and IDO, and showed potent immunosuppressive activityin vitro. After reinfusion with DCiTreg, marked antiarthritic activity improved clinical scores and histological end-points were observed. The serological levels of inflammatory cytokines and anti-CII antibodies were low and TGF-βproduction was high in the DCiTreg-treated group. DCiTregalso induced new iTregsin vivo. Moreover, the inhibitory activity of DCiTregon CIA was lost following pretreatment with the inhibitor of indoleamine 2,3-dioxygenase (IDO). Collectively, these findings suggest that transferred iTregs could induce tolerogenic characteristics in splenic DCs and these cells could effectively dampen CIA in an IDO-dependent manner. Thus, the potential therapeutic effects of iTregs in CIA are likely maintained through the generation of tolerogenic DCsin vivo.


2018 ◽  
Vol 39 (2) ◽  
pp. 143-152 ◽  
Author(s):  
Oliver J. Lawless ◽  
Joseph A. Bellanti ◽  
Milton L. Brown ◽  
Kathryn Sandberg ◽  
Jason G. Umans ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112242 ◽  
Author(s):  
Ghanashyam Sarikonda ◽  
Georgia Fousteri ◽  
Sowbarnika Sachithanantham ◽  
Jacqueline F. Miller ◽  
Amy Dave ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 554 ◽  
Author(s):  
Yujie Liu ◽  
Chunrong Bao ◽  
Liqing Wang ◽  
Rongxiang Han ◽  
Ulf H. Beier ◽  
...  

Functions of the GCN5-related N-acetyltransferase (GNAT) family of histone/protein acetyltransferases (HATs) in Foxp3+ T-regulatory (Treg) cells are unexplored, despite the general importance of these enzymes in cell biology. We now show that two prototypical GNAT family members, GCN5 (general control nonrepressed-protein 5, lysine acetyltransferase (KAT)2a) and p300/CBP-associated factor (p300/CBP-associated factor (PCAF), Kat2b) contribute to Treg functions through partially distinct and partially overlapping mechanisms. Deletion of Gcn5 or PCAF did not affect Treg development or suppressive function in vitro, but did affect inducible Treg (iTreg) development, and in vivo, abrogated Treg-dependent allograft survival. Contrasting effects were seen upon targeting of each HAT in all T cells; mice lacking GCN5 showed prolonged allograft survival, suggesting this HAT might be a target for epigenetic therapy in allograft recipients, whereas transplants in mice lacking PCAF underwent acute allograft rejection. PCAF deletion also enhanced anti-tumor immunity in immunocompetent mice. Dual deletion of GCN5 and PCAF led to decreased Treg stability and numbers in peripheral lymphoid tissues, and mice succumbed to severe autoimmunity by 3–4 weeks of life. These data indicate that HATs of the GNAT family have contributions to Treg function that cannot be replaced by the functions of previously characterized Treg HATs (CBP, p300, and Tip60), and may be useful targets in immuno-oncology.


Blood ◽  
2009 ◽  
Vol 113 (4) ◽  
pp. 837-845 ◽  
Author(s):  
Guangming Gong ◽  
Lingyun Shao ◽  
Yunqi Wang ◽  
Crystal Y. Chen ◽  
Dan Huang ◽  
...  

Abstract Although Foxp3+ T regulatory cells (Tregs) are well documented for their ability to suppress various immune cells, T-cell subsets capable of counteracting Tregs have not been demonstrated. Here, we assessed phosphoantigen-activated Vγ2Vδ2 T cells for the ability to interplay with Tregs in the context of mycobacterial infection. A short-term IL-2 treatment regimen induced marked expansion of CD4+CD25+Foxp3+ T cells and subsequent suppression of mycobacterium-driven increases in numbers of Vγ2Vδ2 T cells. Surprisingly, activation of Vγ2Vδ2 T cells by adding phosphoantigen Picostim to the IL-2 treatment regimen down-regulated IL-2–induced expansion of CD4+CD25+Foxp3+ T cells. Consistently, in vitro activation of Vγ2Vδ2 T cells by phosphoantigen plus IL-2 down-regulated IL-2–induced expansion of CD4+CD25+Foxp3+ T cells. Interestingly, anti–IFN-γ–neutralizing antibody, not anti–TGF-β or anti–IL-4, reduced the ability of activated Vγ2Vδ2 T cells to down-regulate Tregs, suggesting that autocrine IFN-γ and its network contributed to Vγ2Vδ2 T cells' antagonizing effects. Furthermore, activation of Vγ2Vδ2 T cells by Picostim plus IL-2 treatment appeared to reverse Treg-driven suppression of immune responses of phosphoantigen-specific IFNγ+ or perforin+ Vγ2Vδ2 T cells and PPD-specific IFNγ+αβ T cells. Thus, phos-phoantigen activation of Vγ2Vδ2 T cells antagonizes IL-2–induced expansion of Tregs and subsequent suppression of Ag-specific antimicrobial T-cell responses in mycobacterial infection.


Sign in / Sign up

Export Citation Format

Share Document