scholarly journals Wear Mechanism of Multilayer Coated Carbide Cutting Tool in the Milling Process of AISI 4340 under Cryogenic Environment

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 524
Author(s):  
Shalina Sheik Muhamad ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron ◽  
Hafizal Yazid

Cryogenic technique is the use of a cryogenic medium as a coolant in machining operations. Commonly used cryogens are liquid nitrogen (LN2) and carbon dioxide (CO2) because of their low cost and non-harmful environmental impact. In this study, the effects of machining conditions and parameters on the wear mechanism were analysed in the milling process of AISI 4340 steel (32 HRC) under cryogenic conditions using a multilayer coated carbide cutting tool (TiAlN/AlCrN). A field emission scanning electron microscope with energy-dispersive X-ray analysis was used to examine the wear mechanisms comprehensively. At low machining parameters, abrasion and adhesion were the major wear mechanisms which occurred on the rake face. Machining at high machining parameters caused the removal of the coating material on the rake face due to the high temperature and cutting force generated during the cutting process. In addition, it was found that continuously adhered material on the rake face would lead to crater wear. Furthermore, the phenomenon of oxidation was also observed when machining at high cutting speed, which resulted in diffusion wear and increase in the crater wear. Based on the relationship between the cutting force and cutting temperature, it can be concluded that these machining outputs are significant in affecting the progression of tool wear rate, and tool wear mechanism in the machining of AISI 4340 alloy steel.

2019 ◽  
Vol 23 (1) ◽  
pp. 172-182 ◽  
Author(s):  
Milon Selvam Dennison ◽  
Sivaram N M ◽  
Debabrata Barik ◽  
Senthil Ponnusamy

Abstract The objective of this study is to analyse the effect of tool-work interface temperature observed during the turning of AISI 4340 cylindrical steel components in three machining conditions, namely flooded, near-dry and dry conditions with three separate CNMG-PEF 800 diamond finish Titanium Nitride (TiN) coated carbide cutting tool. The machining parameters considered in this study are cutting velocity, feed rate and depth of cut. The experiments were planned based on full factorial design (33) and executed in an All Geared Conventional Lathe. The tool-work interface temperature was observed using a K-type tool-work thermocouple, while the machining of steel, and subsequently, a mathematical model was developed for the tool-work interface temperature values through regression analysis. The significance of the selected machining parameters and their levels on tool-work interface temperature was found using analysis of variance (ANOVA) and F-test. The results revealed that machining under near-dry condition exhibited lesser temperature at the tool-work interface, which is the sign of producing better quality products in equivalence with the machining under flooded condition.


2013 ◽  
Vol 773-774 ◽  
pp. 409-413 ◽  
Author(s):  
M.S. Said ◽  
J.A. Ghani ◽  
Che Hassan Che Haron ◽  
Shahrizan Yusoff ◽  
Mohd Asri Selamat ◽  
...  

Aluminium silicon alloy (AlSic) matrix composite reinforced with aluminium nitride (AlN) particle is a new generation material for automotive and aerospace application. This material has low density, light weight, high strength, high hardness and stiffness. Metal Matrix Composit (MMC) material is one of the advanced materials which have good future prospects. This paper presents the study of tool wear and surface roughness investigation when milling AlSi/AlN Metal Matrix Composite using uncoated carbide cutting tool. The volume of AlN reinforced particle was 10%. The milling process was carried out under dry cutting condition. The uncoated carbide insert parameters used were cutting speed of (250-750 m/min), while feed rate and depth of cut were kept constant at 0.15 mm/tooth of 0.3mm respectively. The Sometech SV-35 video microscope system and Mitutoyo surface roughness tester were used for tool wear measurements and surface roughness respectively. The results revealed that the tool wear increases with cutting speed (450 m/min). While at high cutting speed, the surface finish improves. It was found that the cutting speed of 750m/min was optimum condition for obtaining smooth finish and longer tool life. Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, and surface roughness, uncoated cemented carbide tool


2015 ◽  
Vol 761 ◽  
pp. 257-261 ◽  
Author(s):  
M.R. Nurul Fatin ◽  
A.B. Mohd Hadzley ◽  
Raja Abdullah Raja Izamshah ◽  
M.A. Amrand

This paper presents an experimental study of wear mechanism on high speed milling of FC300 gray cast iron using TiAlN coated carbide cutting tool. The experiment was carried out under dry cutting condition with different cutting speed (95-143m/min) and feed rate (4000-7000 mm/min). The cutting tool for machining FC300 gray cast iron is a ball nose end mill ø32 mm coated with TiAlN. Wear mechanism was analyzed at VB 0.08mm after 60 minute machining. The flank wear increased when the spindle speed and feed rate increased caused by the generated high shearing force and high cutting temperature. The dominant wear mechanisms appear to be the abrasion, adhesion, chipping and delaminating of coating at the contact surface of cutting tool. Formation of built-up edge (BUE) was evidence for most of the cutting trials.


2014 ◽  
Vol 590 ◽  
pp. 294-298
Author(s):  
Pichai Janmanee ◽  
Somchai Wonthaisong ◽  
Dollathum Araganont

In this study, effect of machining parameters and wear mechanism in milling process of mold steel AISI-P20 and AISI-1050, using 10 mm twin flute type end mill diameter. The experimental results found that characteristics of milling surfaces and wear of the mill end were directly influenced by changes of parameters for all test conditions. As a result, the quality of milling surfaces also changed. However, mould steels which had the good quality surface is AISI-1050, with roughnesses of 2.120 μm. Quality milling surfaces were milled by using the most suitable parameter feed rate of 45 mm/min, a spindle speed of 637 rpm and a cut depth level of 3 mm, for both grades. Moreover, material removal rate and duration of the milling process, the milling end mills affect wear of the edge in every bite when the feed rate is low, high speed and level depth of cut at least. It was found that limited wear less will affect the surface roughness (Ra) represents the good quality surface.


Author(s):  
Niniza S. P. Dlamini ◽  
Iakovos Sigalas ◽  
Andreas Koursaris

Cutting tool wear of polycrystalline cubic boron nitride (PcBN) tools was investigated in oblique turning experiments when machining compacted graphite iron at high cutting speeds, with the intention of elucidating the failure mechanisms of the cutting tools and presenting an analysis of the chip formation process. Dry finish turning experiments were conducted in a CNC lathe at cutting speeds in the range of 500–800m/min, at a feed rate of 0.05mm/rev and depth of cut of 0.2mm. Two different tool end-of-life criteria were used: a maximum flank wear scar size of 0.3mm (flank wear failure criterion) or loss of cutting edge due to rapid crater wear to a point where the cutting tool cannot machine with an acceptable surface finish (surface finish criterion). At high cutting speeds, the cutting tools failed prior to reaching the flank wear failure criterion due to rapid crater wear on the rake face of the cutting tools. Chip analysis, using SEM, revealed shear localized chips, with adiabatic shear bands produced in the primary and secondary shear zones.


2017 ◽  
Vol 65 (4) ◽  
pp. 553-559 ◽  
Author(s):  
D. Rajeev ◽  
D. Dinakaran ◽  
S.C.E. Singh

AbstractNowadays, finishing operation in hardened steel parts which have wide industrial applications is done by hard turning. Cubic boron nitride (CBN) inserts, which are expensive, are used for hard turning. The cheaper coated carbide tool is seen as a substitute for CBN inserts in the hardness range (45–55 HRC). However, tool wear in a coated carbide tool during hard turning is a significant factor that influences the tolerance of machined surface. An online tool wear estimation system is essential for maintaining the surface quality and minimizing the manufacturing cost. In this investigation, the cutting tool wear estimation using artificial neural network (ANN) is proposed. AISI4140 steel hardened to 47 HRC is used as a work piece and a coated carbide tool is the cutting tool. Experimentation is based on full factorial design (FFD) as per design of experiments. The variations in cutting forces and vibrations are measured during the experimentation. Based on the process parameters and measured parameters an ANN-based tool wear estimator is developed. The wear outputs from the ANN model are then tested. It was observed that as the model using ANN provided quite satisfactory results, and that it can be used for online tool wear estimation.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1515
Author(s):  
Jinxing Wu ◽  
Lin He ◽  
Yanying Wu ◽  
Chaobiao Zhou ◽  
Zhongfei Zou ◽  
...  

Tool-chip friction increases cutting temperature, aggravates tool wear, and shortens the service life of cutting tools. A micro-groove design of the rake face can improve the wear performance of the tool. In this study, we used the finite element simulation “Deform” to obtain the temperature field distribution of the tool rake face. The size of the micro-groove was determined by selecting a suitable temperature field combined with the characteristics of tool–chip flow in the cutting process, and the tool was prepared using powder metallurgy. The three-direction cutting forces and tool tip temperature were obtained by a cutting test. Compared with the original turning tool, the cutting force and cutting temperature of the micro-groove tool were reduced by more than 20%, the friction coefficient was reduced by more than 14%, the sliding energy was reduced and the shear energy was greatly decreased. According to the analysis of tool wear by SEM (scanning electron microscope) and EDS (energy dispersive X-ray spectroscopy), the crater wear, adhesive wear and oxidation wear of the micro-groove tool were lower than those of the original turning tool. In particular, the change in the crater wear area on the rake face of the original tool and the micro-groove tool was consistent with the cutting temperature and the wear width of the flank face. On the whole, the crater wear area and the change rate of the crater wear area of the micro-groove tool were smaller. Due to the proper microgroove structure of the rake face, the tool-chip contact area decreased, and the second rake angle of the tool became larger. Hence, the tool-chip friction, cutting forces, cutting energy consumption were reduced, tool wear was improved, and the service life of the micro-groove tool was five times longer than that of the original tool.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 623 ◽  
Author(s):  
Dervis Ozkan ◽  
Peter Panjan ◽  
Mustafa Sabri Gok ◽  
Abdullah Cahit Karaoglanli

Carbon fiber-reinforced polymers (CFRPs) have very good mechanical properties, such as extremely high tensile strength/weight ratios, tensile modulus/weight ratios, and high strengths. CFRP composites need to be machined with a suitable cutting tool; otherwise, the machining quality may be reduced, and failures often occur. However, as a result of the high hardness and low thermal conductivity of CFRPs, the cutting tools used in the milling process of these materials complete their lifetime in a short cycle, due to especially abrasive wear and related failure mechanisms. As a result of tool wear, some problems, such as delamination, fiber breakage, uncut fiber and thermal damage, emerge in CFRP composite under working conditions. As one of the main failure mechanisms emerging in the milling of CFRPs, delamination is primarily affected by the cutting tool material and geometry, machining parameters, and the dynamic loads arising during the machining process. Dynamic loads can lead to the breakage and/or wear of cutting tools in the milling of difficult-to-machine CFRPs. The present research was carried out to understand the influence of different machining parameters on tool abrasion, and the work piece damage mechanisms during CFRP milling are experimentally investigated. For this purpose, cutting tests were carried out using a (Physical Vapor Deposition) PVD-coated single layer TiAlN and TiN carbide tool, and the abrasion behavior of the coated tool was investigated under dry machining. To understand the wear process, scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) was used. As a result of the experiments, it was determined that the hard and abrasive structure of the carbon fibers caused flank wear on TiAlN- and TiN-coated cutting tools. The best machining parameters in terms of the delamination damage of the CFRP composite were obtained at high cutting speeds and low feed rates. It was found that the higher wear values were observed at the TiAlN-coated tool, at the feed rate of 0.05 mm/tooth.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1338
Author(s):  
Lakshmanan Selvam ◽  
Pradeep Kumar Murugesan ◽  
Dhananchezian Mani ◽  
Yuvaraj Natarajan

Over the past decade, the focus of the metal cutting industry has been on the improvement of tool life for achieving higher productivity and better finish. Researchers are attempting to reduce tool failure in several ways such as modified coating characteristics of a cutting tool, conventional coolant, cryogenic coolant, and cryogenic treated insert. In this study, a single layer coating was made on cutting carbide inserts with newly determined thickness. Coating thickness, presence of coating materials, and coated insert hardness were observed. This investigation also dealt with the effect of machining parameters on the cutting force, surface finish, and tool wear when turning Ti-6Al-4V alloy without coating and Physical Vapor Deposition (PVD)-AlCrN coated carbide cutting inserts under cryogenic conditions. The experimental results showed that AlCrN-based coated tools with cryogenic conditions developed reduced tool wear and surface roughness on the machined surface, and cutting force reductions were observed when a comparison was made with the uncoated carbide insert. The best optimal parameters of a cutting speed (Vc) of 215 m/min, feed rate (f) of 0.102 mm/rev, and depth of cut (doc) of 0.5 mm are recommended for turning titanium alloy using the multi-response TOPSIS technique.


Author(s):  
Vahid Pourmostaghimi ◽  
Mohammad Zadshakoyan

Determination of optimum cutting parameters is one of the most essential tasks in process planning of metal parts. However, to achieve the optimal machining performance, the cutting parameters have to be regulated in real time. Therefore, utilizing an intelligent-based control system, which can adjust the machining parameters in accordance with optimal criteria, is inevitable. This article presents an intelligent adaptive control with optimization methodology to optimize material removal rate and machining cost subjected to surface quality constraint in finish turning of hardened AISI D2 considering the real condition of the cutting tool. Wavelet packet transform of cutting tool vibration signals is applied to estimate tool wear. Artificial intelligence techniques (artificial neural networks, genetic programming and particle swarm optimization) are used for modeling of surface roughness and tool wear and optimization of machining process during hard turning. Confirmatory experiments indicated that the efficiency of the proposed adaptive control with optimization methodology is 25.6% higher compared to the traditional computer numerical control turning systems.


Sign in / Sign up

Export Citation Format

Share Document