scholarly journals Peroxiredoxin 6 Mediates the Protective Function of Curcumin Pretreatment in Acute Lung Injury Induced by Serum From Patients Undergoing One-lung Ventilation in Vitro

Author(s):  
Hui-Ting Li ◽  
Fang Tan ◽  
Tian-Hua Zhang ◽  
Long-Hui Cao ◽  
Hong-ying Tan ◽  
...  

Abstract Background: Curcumin has attracted much attention due to its wide range of therapeutic effects. In this study, we used serum collected from patients undergoing one-lung ventilation (OLV) to establish an in vitro acute lung injury (ALI) model to explore the potential protective mechanism of curcumin on ALI to provide a new reference for the prevention and treatment of ALI induced by OLV.Methods: A549 cells were treated with 20% serum from patients undergoing OLV to establish an in vitro ALI model. Curcumin, at a dose of 40 μg/ml, was administered two hours prior to this model. The levels of inflammation and oxidative stress markers were observed by Western blot, qRT–PCR, ELISA and reactive oxygen species assay. Additionally, the expression of peroxiredoxin 6 (Prdx6) and proteins involved in the NF-κB signaling pathway were evaluated.Results: Twenty percent of serum collected from patients undergoing OLV downregulated the expression of Prdx6, leading to the activation of the NF-κB signaling pathway, which was associated with the subsequent overproduction of inflammatory cytokines and reactive oxygen species. Pretreatment with curcumin restored Prdx6 downregulation and inhibited NF-κB pathway activation by suppressing the nuclear translocation of P65, eventually reducing inflammation and oxidative stress damage in A549 cells.Conclusions: Prdx6 mediated the protective function of curcumin by inhibiting the activation of the NF-κB pathway in ALI in vitro.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-19-SCI-19
Author(s):  
Randal J. Kaufman

Abstract Abstract SCI-19 Factor VIII is the protein deficient in the × chromosome-linked bleeding disorder hemophilia A. Previous studies demonstrated that FVIII expression in mammalian cells is limited due to protein misfolding of the newly synthesized polypeptide in the lumen of the endoplasmic reticulum (ER). Although oxidative stress can disrupt protein folding, how protein misfolding and oxidative stress impact each other has not been explored. We have analyzed expression of FVIII to elucidate the relationship between protein misfolding and oxidative stress. Accumulation of misfolded FVIII in the lumen of the ER activates the unfolded protein response (UPR), causes oxidative stress, and induces apoptosis in vitro and in vivo in mice. Strikingly, antioxidant treatment reduces UPR activation, oxidative stress, and apoptosis, and increases FVIII secretion in vitro and in vivo. The findings indicate that reactive oxygen species are a signal generated by misfolded protein in the ER that cause UPR activation and cell death. Genetic or chemical intervention to reduce reactive oxygen species improves protein folding and cell survival and may provide an avenue to treat and/or prevent diseases of protein misfolding. Disclosures No relevant conflicts of interest to declare.


Pathobiology ◽  
2021 ◽  
pp. 1-8
Author(s):  
Naoyuki Matsumoto ◽  
Daisuke Omagari ◽  
Ryoko Ushikoshi-Nakayama ◽  
Tomoe Yamazaki ◽  
Hiroko Inoue ◽  
...  

<b><i>Introduction:</i></b> Type-2 diabetes mellitus (T2DM) is associated with several systemic vascular symptoms and xerostomia. It is considered that hyperglycemia-induced polyuria and dehydration cause decreased body-water volume, leading to decreased saliva secretion and, ultimately, xerostomia. In T2DM, increased production of reactive oxygen species (ROS) causes tissue damage to vascular endothelial cells as well as epithelial tissue, including pancreas and cornea. Hence, a similar phenomenon may occur in other tissues and glands in a hyperglycemic environment. <b><i>Methods:</i></b> Salivary gland tissue injury was examined, using T2DM model mouse (db/db). Transferase‐mediated dUTP nick‐end labeling (TUNEL) was conducted to evaluate tissue injury. The levels of malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine, Bax/Bcl-2 ratio were measured as indicator of oxidative stress. Moreover, in vitro ROS production and cell injury was evaluated by mouse salivary gland-derived normal cells under high-glucose condition culture. <b><i>Results:</i></b> In vivo and in vitro analysis showed a higher percentage of TUNEL-positive cells and higher levels of MDA and 8-hydroxy-2′-deoxyguanosine in salivary gland tissue of db/db mice. This suggests damage of saliva secretion-associated lipids and DNA by hyperglycemic-induced oxidative stress. To analyze the mechanism by which hyperglycemia promotes ROS production, mouse salivary gland-derived cells were isolated. The cell culture with high-glucose medium enhanced ROS production and promotes apoptotic and necrotic cell death. <b><i>Conclusion:</i></b> These findings suggest a novel mechanism whereby hyperglycemic-induced ROS production promotes salivary gland injury, resulting in hyposalivation.


2021 ◽  
Author(s):  
Akio Nakamura ◽  
Ritsuko Kawahrada

Protein glycation is the random, nonenzymatic reaction of sugar and protein induced by diabetes and ageing; this process is quite different from glycosylation mediated by the enzymatic reactions catalysed by glycosyltransferases. Schiff bases form advanced glycation end products (AGEs) via intermediates, such as Amadori compounds. Although these AGEs form various molecular species, only a few of their structures have been determined. AGEs bind to different AGE receptors on the cell membrane and transmit signals to the cell. Signal transduction via the receptor of AGEs produces reactive oxygen species in cells, and oxidative stress is responsible for the onset of diabetic complications. This chapter introduces the molecular mechanisms of disease onset due to oxidative stress, including reactive oxygen species, caused by AGEs generated by protein glycation in a hyperglycaemic environment.


2020 ◽  
Vol 7 (3) ◽  
pp. 782-792 ◽  
Author(s):  
Hongye Yao ◽  
Yang Huang ◽  
Xuan Li ◽  
Xuehua Li ◽  
Hongbin Xie ◽  
...  

Graphene can be modified by different functional groups through various transformation processes in the environment.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yongpan Huang ◽  
Xinliang Li ◽  
Xi Zhang ◽  
Jiayu Tang

Oxymatrine (OMT) is the major quinolizidine alkaloid extracted from the root of Sophora flavescens Ait and has been shown to exhibit a diverse range of pharmacological properties. The aim of the present study was to investigate the role of OMT in diabetic brain injury in vivo and in vitro. Diabetic rats were induced by intraperitoneal injection of a single dose of 65 mg/kg streptozotocin (STZ) and fed a high-fat and high-cholesterol diet. Memory function was assessed using a Morris water maze test. A SH-SY5Y cell injury model was induced by incubation with glucose (30 mM/l) to simulate damage in vitro. The serum fasting blood glucose, insulin, serum S100B, malondialdehyde (MDA), and superoxide dismutase (SOD) levels were analyzed using commercial kits. Morphological changes were observed using Nissl staining and electron microscopy. Cell apoptosis was assessed using Hoechst staining and TUNEL staining. NADPH oxidase (NOX) and caspase-3 activities were determined. The effects of NOX2 and NOX4 knockdown were assessed using small interfering RNA. The expression levels of NOX1, NOX2, and NOX4 were detected using reverse transcription-quantitative PCR and western blotting, and the levels of caspase-3 were detected using western blotting. The diabetic rats exhibited significantly increased plasma glucose, insulin, reactive oxygen species (ROS), S-100B, and MDA levels and decreased SOD levels. Memory function was determined by assessing the percentage of time spent in the target quadrant, the number of times the platform was crossed, escape latency, and mean path length and was found to be significantly reduced in the diabetic rats. Hyperglycemia resulted in notable brain injury, including histological changes and apoptosis in the cortex and hippocampus. The expression levels of NOX2 and NOX4 were significantly upregulated at the protein and mRNA levels, and NOX1 expression was not altered in the diabetic rats. NOX and caspase-3 activities were increased, and caspase-3 expression was upregulated in the brain tissue of diabetic rats. OMT treatment dose-dependently reversed behavioral, biochemical, and molecular changes in the diabetic rats. In vitro, high glucose resulted in increases in reactive oxygen species (ROS), MDA levels, apoptosis, and the expressions of NOX2, NOX4, and caspase-3. siRNA-mediated knockdown of NOX2 and NOX4 decreased NOX2 and NOX4 expression levels, respectively, and reduced ROS levels and apoptosis. The results of the present study suggest that OMT alleviates diabetes-associated cognitive decline, oxidative stress, and apoptosis via NOX2 and NOX4 inhibition.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 567 ◽  
Author(s):  
Fernando J. Peña ◽  
Cristian O’Flaherty ◽  
José M. Ortiz Rodríguez ◽  
Francisco E. Martín Cano ◽  
Gemma L. Gaitskell-Phillips ◽  
...  

Redox regulation and oxidative stress have become areas of major interest in spermatology. Alteration of redox homeostasis is recognized as a significant cause of male factor infertility and is behind the damage that spermatozoa experience after freezing and thawing or conservation in a liquid state. While for a long time, oxidative stress was just considered an overproduction of reactive oxygen species, nowadays it is considered as a consequence of redox deregulation. Many essential aspects of spermatozoa functionality are redox regulated, with reversible oxidation of thiols in cysteine residues of key proteins acting as an “on–off” switch controlling sperm function. However, if deregulation occurs, these residues may experience irreversible oxidation and oxidative stress, leading to malfunction and ultimately death of the spermatozoa. Stallion spermatozoa are “professional producers” of reactive oxygen species due to their intense mitochondrial activity, and thus sophisticated systems to control redox homeostasis are also characteristic of the spermatozoa in the horse. As a result, and combined with the fact that embryos can easily be collected in this species, horses are a good model for the study of redox biology in the spermatozoa and its impact on the embryo.


2018 ◽  
Vol 30 (1) ◽  
pp. 174
Author(s):  
Y.-J. Niu ◽  
N.-H. Kim ◽  
X.-S. Cui

C-Phycocyanin (CP) is a biliprotein enriched in blue-green algae that is known to possess antioxidant, anti-apoptosis, anti-inflammatory, and radical-scavenging properties in somatic cells. However, the protective effect of CP on porcine embryo developmental competence in vitro remains unclear. In the present study, we investigated the effect of CP on the development of porcine early embryos as well as its underlying mechanisms exposing them to H2O2 to induce oxidative stress. The levels of reactive oxygen species, mitochondrial membrane potential, apoptosis, DNA damage, and autophagy in the blastocysts were observed by staining with 2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA), 5,5′,6,6’-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1), terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate (dUTP) nick-end labelling (TUNEL), anti-cytochrome c, and anti-γH2A.X (Ser139), respectively. Colocalization assay of mitochondria and cytochrome c of blastocysts were staining with MitoTracker Red CMXRos and anti-cytochrome c. All data were subjected to one-way ANOVA. Different concentrations of CP (1, 2, 5, 8, 10 µg mL−1) were added to porcine zygote medium 5 (PZM-5, l-glutamine concentration of PZM-3 was modified from 1 to 2 mM) during in vitro culture. The results showed that 5 µg mL−1 CP significantly increased blastocyst formation (62.5 ± 2.1 v. 52.7 ± 2.4; P < 0.05) and hatching rate (10.9 ± 1.9 v. 36.6 ± 5.2; P < 0.05) compared with controls. Blastocyst formation (53.1 ± 2.3 v. 40.1 ± 2.3; P < 0.05) and quality were significantly increased in the 50 µM H2O2 treatment group following 5 µg mL−1 CP addition. C-Phycocyanin prevented the H2O2-induced compromise of mitochondrial membrane potential, release of cytochrome c from the mitochondria, and generation of reactive oxygen species. Furthermore, apoptosis, DNA damage level, and autophagy in the blastocysts were attenuated by supplementation of CP in the H2O2-induced oxidative injury group compared with that in controls. These results suggest that CP has beneficial effects on the development of porcine parthenotes by attenuating mitochondrial dysfunction and oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document