scholarly journals Surface hydrate-assisted low- and medium-temperature sintering of MgO

2022 ◽  
Vol 206 ◽  
pp. 114258
Author(s):  
Ning Guo ◽  
Ming Liu ◽  
Jie-Yu Shen ◽  
Hui-Zhen Shen ◽  
Ping Shen
Keyword(s):  
2008 ◽  
Vol 59 (4) ◽  
Author(s):  
Neculai Catalin Lungu ◽  
Maria Alexandroaei

The aim of the present work is to offer a practical methodology to realise an Arrhenius type kinetic model for a biotechnological process of alcoholic fermentation based on the Saccharomyces cerevisiae yeast. Using the experimental data we can correlate the medium temperature of fermentation with the time needed for a fermentation process under imposed conditions of economic efficiency.


2002 ◽  
Vol 56 (11) ◽  
pp. 483-488
Author(s):  
Sasa Jovanic ◽  
Dragoslav Stoiljkovic ◽  
Ivanka Popovic

The contamination of important synthetic (surface unmodified) polymers by various heavy metal compounds (such as copper, manganese and lead) in aqueous medium was investigated in this study. The influence of the pH of the aqueous medium, temperature and metal type on contamination was investigated during a 10 day period. It was found that increasing pH contributed to higher polymer contamination (at higher pH 100 times for copper and up to 400 times for lead), as well as contact with easily penetrable substances. Increasing temperature decreased contamination by the metal compound for PELD and PET which was not the case for PEHD and PR.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 954 ◽  
Author(s):  
Hanne Kauko ◽  
Daniel Rohde ◽  
Armin Hafner

District heating enables an economical use of energy sources that would otherwise be wasted to cover the heating demands of buildings in urban areas. For efficient utilization of local waste heat and renewable heat sources, low distribution temperatures are of crucial importance. This study evaluates a local heating network being planned for a new building area in Trondheim, Norway, with waste heat available from a nearby ice skating rink. Two alternative supply temperature levels have been evaluated with dynamic simulations: low temperature (40 °C), with direct utilization of waste heat and decentralized domestic hot water (DHW) production using heat pumps; and medium temperature (70 °C), applying a centralized heat pump to lift the temperature of the waste heat. The local network will be connected to the primary district heating network to cover the remaining heat demand. The simulation results show that with a medium temperature supply, the peak power demand is up to three times higher than with a low temperature supply. This results from the fact that the centralized heat pump lifts the temperature for the entire network, including space and DHW heating demands. With a low temperature supply, heat pumps are applied only for DHW production, which enables a low and even electricity demand. On the other hand, with a low temperature supply, the district heating demand is high in the wintertime, in particular if the waste heat temperature is low. The choice of a suitable supply temperature level for a local heating network is hence strongly dependent on the temperature of the available waste heat, but also on the costs and emissions related to the production of district heating and electricity in the different seasons.


2013 ◽  
Vol 31 ◽  
pp. 120-124 ◽  
Author(s):  
So Young Lee ◽  
Dong Won Shin ◽  
Chenyi Wang ◽  
Kang Hyuck Lee ◽  
Michael D. Guiver ◽  
...  

Author(s):  
Christian Frilund ◽  
Esa Kurkela ◽  
Ilkka Hiltunen

AbstractFor the realization of small-scale biomass-to-liquid (BTL) processes, low-cost syngas cleaning remains a major obstacle, and for this reason a simplified gas ultracleaning process is being developed. In this study, a low- to medium-temperature final gas cleaning process based on adsorption and organic solvent-free scrubbing methods was coupled to a pilot-scale staged fixed-bed gasification facility including hot filtration and catalytic reforming steps for extended duration gas cleaning tests for the generation of ultraclean syngas. The final gas cleaning process purified syngas from woody and agricultural biomass origin to a degree suitable for catalytic synthesis. The gas contained up to 3000 ppm of ammonia, 1300 ppm of benzene, 200 ppm of hydrogen sulfide, 10 ppm of carbonyl sulfide, and 5 ppm of hydrogen cyanide. Post-run characterization displayed that the accumulation of impurities on the Cu-based deoxygenation catalyst (TOS 105 h) did not occur, demonstrating that effective main impurity removal was achieved in the first two steps: acidic water scrubbing (AWC) and adsorption by activated carbons (AR). In the final test campaign, a comprehensive multipoint gas analysis confirmed that ammonia was fully removed by the scrubbing step, and benzene and H2S were fully removed by the subsequent activated carbon beds. The activated carbons achieved > 90% removal of up to 100 ppm of COS and 5 ppm of HCN in the syngas. These results provide insights into the adsorption affinity of activated carbons in a complex impurity matrix, which would be arduous to replicate in laboratory conditions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 366
Author(s):  
Margarita Gabrovska ◽  
Ivan Ivanov ◽  
Dimitrinka Nikolova ◽  
Jugoslav Krstić ◽  
Anna Maria Venezia ◽  
...  

Supported gold on co-precipitated nanosized NiAl layered double hydroxides (LDHs) was studied as an effective catalyst for medium-temperature water–gas shift (WGS) reaction, an industrial catalytic process traditionally applied for the reduction in the amount of CO in the synthesis gas and production of pure hydrogen. The motivation of the present study was to improve the performance of the Au/NiAl catalyst via modification by CeO2. An innovative approach for the direct deposition of ceria (1, 3 or 5 wt.%) on NiAl-LDH, based on the precipitation of Ce3+ ions with 1M NaOH, was developed. The proposed method allows us to obtain the CeO2 phase and to preserve the NiAl layered structure by avoiding the calcination treatment. The synthesis of Au-containing samples was performed through the deposition–precipitation method. The as-prepared and WGS-tested samples were characterized by X-ray powder diffraction, N2-physisorption and X-ray photoelectron spectroscopy in order to clarify the effects of Au and CeO2 loading on the structure, phase composition, textural and electronic properties and activity of the catalysts. The reduction behavior of the studied samples was evaluated by temperature-programmed reduction. The WGS performance of Au/NiAl catalysts was significantly affected by the addition of CeO2. A favorable role of ceria was revealed by comparison of CO conversion degree at 220 °C reached by 3 wt.% CeO2-modified and ceria-free Au/NiAl samples (98.8 and 83.4%, respectively). It can be stated that tuning the properties of Au/NiAl LDH via CeO2 addition offers catalysts with possibilities for practical application owing to innovative synthesis and improved WGS performance.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2924
Author(s):  
Wei Wei ◽  
Yusong Guo ◽  
Kai Hou ◽  
Kai Yuan ◽  
Yi Song ◽  
...  

Distributed thermal energy storage (DTES) provides specific opportunities to realize the sustainable and economic operation of urban electric heat integrated energy systems (UEHIES). However, the construction of the theory of the model and the configuration method of thermal storage for distributed application are still challenging. This paper analyzes the heat absorption and release process between the DTES internal heat storage medium and the heat network transfer medium, refines the relationship between heat transfer power and temperature characteristics, and establishes a water thermal energy storage and electric heater phase change thermal energy storage model, considering medium temperature characteristics. Combined with the temperature transmission delay characteristics of a heat network, a two-stage optimal configuration model of DTES for UEHIES is proposed. The results show that considering the temperature characteristics in the configuration method can accurately reflect the performance of DTES, enhance wind power utilization, improve the operation efficiency of energy equipment, and reduce the cost of the system.


Sign in / Sign up

Export Citation Format

Share Document