scholarly journals Quantum Behavior of a Nonextensive Oscillatory Dissipative System in the Coherent State

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1178
Author(s):  
Jeong Ryeol Choi

We investigate the nonextensivity of a generalized dissipative oscillatory system in the Glauber coherent state. We introduce a parameter q as a measure of the nonextensivity of the system. Considering the characteristic of nonextensivity, the system is described by a deformed Caldirola–Kanai oscillator, which is represented in terms of q. We manage the system by describing the associated Hamiltonian in terms of the harmonic oscillator ladder operators. The time evolutions of the canonical variables, the Hamiltonian expectation value, the quantum energy, and the symmetry-breaking in the evolution of the system, are analyzed in detail regarding their dependence on q, damping factor, and the external driving force. The amplitude of the oscillator is slightly quenched as q becomes large, whereas the amplitude of the canonical momentum is enhanced in response to the growth in q. As q increases, the dissipation of the quantum energy becomes a little faster as a manifestation of the nonextensivity of the system. Our results are compared to the classical results, as well as to those in the previous research performed on the basis of the SU(1,1) coherent states. The coherent states, including the Glauber coherent states, can be convenient resources for carrying information, which is crucial in quantum information processing.

2000 ◽  
Vol 14 (16) ◽  
pp. 609-618
Author(s):  
V. A. POPESCU

Signal-to-quantum noise ratio for quantum current in mesoscopic Josephson junction of a circular superconducting ring can be improved if the electromagnetic field is in a successive squeezed coherent state. The mesoscopic Josephson junctions can feel the difference between the successive squeezed coherent states and other types of squeezed coherent states because their current–voltage Shapiro steps are different. We compare our method with another procedure for superposition of two squeezed coherent states (a squeezed even coherent state) and consider the effect of different large inductances on the supercurrent.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1136
Author(s):  
Bang-Hai Wang ◽  
Zi-Heng Ding ◽  
Zhihao Ma ◽  
Shao-Ming Fei

We show the properties and characterization of coherence witnesses. We show methods for constructing coherence witnesses for an arbitrary coherent state. We investigate the problem of finding common coherence witnesses for certain class of states. We show that finitely many different witnesses W1,W2,⋯,Wn can detect some common coherent states if and only if ∑i=1ntiWi is still a witnesses for any nonnegative numbers ti(i=1,2,⋯,n). We show coherent states play the role of high-level witnesses. Thus, the common state problem is changed into the question of when different high-level witnesses (coherent states) can detect the same coherence witnesses. Moreover, we show a coherent state and its robust state have no common coherence witness and give a general way to construct optimal coherence witnesses for any comparable states.


2021 ◽  
Author(s):  
Xiaoyan Zhang ◽  
Jisuo Wang ◽  
Lei Wang ◽  
Xiangguo Meng ◽  
Baolong Liang

Abstract Two new photon-modulated spin coherent states (SCSs) are introduced by operating the spin ladder operators J ± on the ordinary SCS in the Holstein-Primakoff realization and the nonclassicality is exhibited via their photon number distribution, second-order correlation function, photocount distribution and negativity of Wigner distribution. Analytical results show that the photocount distribution is a Bernoulli distribution and the Wigner functions are only associated with two-variable Hermite polynomials. Compared with the ordinary SCS, the photon-modulated SCSs exhibit more stronger nonclassicality in certain regions of the photon modulated number k and spin number j, which means that the nonclassicality can be enhanced by selecting suitable parameters.


2019 ◽  
Vol 17 (02) ◽  
pp. 2050021
Author(s):  
H. Fakhri ◽  
S. E. Mousavi Gharalari

We use the recursion relations of the continuous [Formula: see text]-Hermite polynomials and obtain the [Formula: see text]-difference realizations of the ladder operators of a [Formula: see text]-oscillator algebra in terms of the Askey–Wilson operator. For [Formula: see text]-deformed coherent states associated with a disc in the radius [Formula: see text], we obtain a compact form in [Formula: see text]-representation by using the generating function of the continuous [Formula: see text]-Hermite polynomials, too. In this way, we obtain a [Formula: see text]-difference realization for the [Formula: see text]-oscillator algebra in the finite interval [Formula: see text] as a [Formula: see text]-generalization of known differential formalism with respect to [Formula: see text] in the interval [Formula: see text] of the simple harmonic oscillator.


2017 ◽  
Vol 4 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Regina Kruse ◽  
Christine Silberhorn ◽  
Tim Bartley

Abstract The nonorthogonality of coherent states is a fundamental property which prevents them from being perfectly and deterministically discriminated. Here, we present an experimentally feasible protocol for the probabilistic orthogonalisation of a pair of coherent states, independent of their amplitude and phase. In contrast to unambiguous state discrimination, a successful operation of our protocol is heralded without measuring the states. As such, they remain suitable for further manipulation and the obtained orthogonal states serve as a discretevariable basis. Therefore, our protocol doubles as a simple continuous-to-discrete variable converter, which may find application in hybrid continuous-discrete quantum information processing protocols.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 201
Author(s):  
Jerzy Dajka ◽  
Jerzy Łuczka

We investigate advantages and disadvantages of using Gazeau–Klauder coherent states for optical communication. In this short paper we show that using an alphabet consisting of coherent Gazeau–Klauder states related to a Kerr-type nonlinear oscillator instead of standard Perelomov coherent states results in lowering of the Helstrom bound for error probability in binary communication. We also discuss trace distance between Gazeau–Klauder coherent states and a standard coherent state as a quantifier of distinguishability of alphabets.


1998 ◽  
Vol 12 (29n30) ◽  
pp. 1209-1216 ◽  
Author(s):  
M. H. Y. Moussa ◽  
B. Baseia

We present a scheme for the teleportation of a coherent state or a mesoscopic superposition of coherent states — the Schrödinger-cat state. The proposal involves a mesoscopic-correlated state as the quantum channel which is generated through an adaptation of a quantum switch scheme. The required joint measurement performed in a mesoscopic Bell basis is accomplished through a technique for detection of a Schrödinger-cat state "trapped" in a cavity.


1997 ◽  
Vol 11 (09n10) ◽  
pp. 399-406
Author(s):  
Norton G. de Almeida ◽  
Célia M. A. Dantas

The norder expressions for the squeezed and coherent states are derived as a natural generalization of the usual squeezed coherent and coherent states. The photon number distribution of n order of squeezed coherent states that are eigenstates of the operators [Formula: see text] is derived. The n order coherent state is a particular case of the states that we are now deriving. Some mathematical and quantum statistical properties of these states are discussed.


2014 ◽  
Vol 11 (04) ◽  
pp. 1450027
Author(s):  
V. Chithiika Ruby ◽  
P. Muruganandam ◽  
M. Senthilvelan

In this paper, we investigate revival and super revivals of nonlinear coherent states while generating these states through the interaction of coherent states of a generalized isotonic oscillator with the nonlinear media during time evolution. We construct the f-deformed generalized isotonic oscillator which is a non-isochronous partner of the generalized isotonic oscillator. We connect these two nonlinear oscillators through deformed ladder operators. The generalized isotonic oscillator possesses linear energy spectrum whereas f-deformed generalized isotonic oscillator exhibits nonlinear energy spectrum. The presence of the cubic nonlinearity in the f-deformed oscillator motivates us to study revivals, super and fractional revivals of coherent states which are nonlinearly evolved. We also investigate time-dependent expectation values of uncertainties in certain canonically conjugate variables and demonstrate that at revival and super revival times the uncertainty relation attains its minimum value.


Sign in / Sign up

Export Citation Format

Share Document