Cloud detection methods for a stand-alone ground based microwave radiometer

2021 ◽  
Author(s):  
Moritz Löffler ◽  
Christine Knist ◽  
Jasmin Vural ◽  
Annika Schomburg ◽  
Volker Lehmann ◽  
...  

<p>The project “Pilotstation” at DWD employs a test bed setup to assess data availability, quality, observation impact and operational sustainability for five different ground based remote sensing instruments. The instruments in question, also referred to as “profilers”, are designed to continuously measure vertical profiles of thermodynamic and cloud/aerosol related variables.</p> <p>A ground based microwave radiometer (MWR) is one of the instruments evaluated in the project “Pilotstation”. MWR primarily measure downwelling radiation in the K-band and V-band in the form of brightness temperatures (TB). All-sky temperature and low-resolution humidity profiles as well as high-accuracy liquid water path (LWP, ΔLWP: ± 10-20 gm<sup>-2</sup>) and integrated water vapour (IWV, ΔIWV: ~ ± 0.5 kgm<sup>-2</sup>) are secondary products, which can be derived from the TB.</p> <p>The adaptation of the fast radiative transfer model RTTOV for ground based instruments enabled weather services to go forward with directly assimilating MWR TB rather than secondary products. First assimilation experiments of MWR TB at DWD were successful. Alongside other quality checks, the data assimilation (DA) relies on a cloud detection beforehand. The most frequent reason for rejecting data from DA is the suspected presence of clouds, consequently reliably identifying clouds without excessively rejecting clear-sky data is especially important for a high availability of suitable data.</p> <p>The study presented focuses on the requirements of operational DA and a stand-alone setup of an MWR. The work compares the performance of cloud detection algorithms used in scientific publications based on MWR observations. The comparisons include methods using TB, LWP and their variability. For this the CloudNet classification time series at Lindenberg and observation minus model background statistics serve as references. The presentation will also include progress made on refining the cloud detection schemes at hand in order to achieve a higher precision and to better meet the requirements of DA.</p>

2015 ◽  
Vol 8 (10) ◽  
pp. 11285-11321 ◽  
Author(s):  
F. A. Mejia ◽  
B. Kurtz ◽  
K. Murray ◽  
L. M. Hinkelman ◽  
M. Sengupta ◽  
...  

Abstract. A method for retrieving cloud optical depth (τc) using a ground-based sky imager (USI) is presented. The Radiance Red-Blue Ratio (RRBR) method is motivated from the analysis of simulated images of various τc produced by a 3-D Radiative Transfer Model (3DRTM). From these images the basic parameters affecting the radiance and RBR of a pixel are identified as the solar zenith angle (θ0), τc, solar pixel angle/scattering angle (ϑs), and pixel zenith angle/view angle (ϑz). The effects of these parameters are described and the functions for radiance, Iλ(τc, θ0, ϑs, ϑz) and the red-blue ratio, RBR(τc, θ0, ϑs, ϑz) are retrieved from the 3DRTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τc, where RBR increases with τc up to about τc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Iλmeas(ϑs, ϑz), in addition to RBRmeas(ϑs, ϑz) to obtain a unique solution for τc. The RRBR method is applied to images taken by a USI at the Oklahoma Atmospheric Radiation Measurement program (ARM) site over the course of 220 days and validated against measurements from a microwave radiometer (MWR); output from the Min method for overcast skies, and τc retrieved by Beer's law from direct normal irradiance (DNI) measurements. A τc RMSE of 5.6 between the Min method and the USI are observed. The MWR and USI have an RMSE of 2.3 which is well within the uncertainty of the MWR. An RMSE of 0.95 between the USI and DNI retrieved τc is observed. The procedure developed here provides a foundation to test and develop other cloud detection algorithms.


2016 ◽  
Vol 9 (8) ◽  
pp. 4151-4165 ◽  
Author(s):  
Felipe A. Mejia ◽  
Ben Kurtz ◽  
Keenan Murray ◽  
Laura M. Hinkelman ◽  
Manajit Sengupta ◽  
...  

Abstract. A method for retrieving cloud optical depth (τc) using a UCSD developed ground-based sky imager (USI) is presented. The radiance red–blue ratio (RRBR) method is motivated from the analysis of simulated images of various τc produced by a radiative transfer model (RTM). From these images the basic parameters affecting the radiance and red–blue ratio (RBR) of a pixel are identified as the solar zenith angle (θ0), τc, solar pixel angle/scattering angle (ϑs), and pixel zenith angle/view angle (ϑz). The effects of these parameters are described and the functions for radiance, Iλτc, θ0, ϑs, ϑz, and RBRτc, θ0, ϑs, ϑz are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τc, where RBR increases with τc up to about τc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Iλmeasϑs, ϑz, in addition to RBRmeasϑs, ϑz, to obtain a unique solution for τc. The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement (ARM) program site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min et al. (2003) method for overcast skies. τc values ranged from 0 to 80 with values over 80, being capped and registered as 80. A τc RMSE of 2.5 between the Min et al. (2003) method and the USI are observed. The MWR and USI  have an RMSE of 2.2, which is well within the uncertainty of the MWR. The procedure developed here provides a foundation to test and develop other cloud detection algorithms.


2016 ◽  
Vol 66 (1) ◽  
pp. 19
Author(s):  
Xiang Wang ◽  
Yifang Ren ◽  
Gang Li

A cloud detection algorithm for satellite radiance from the microwave temperature sounder (MWTS) on board the first satellite of the Chinese polar-orbiting Fengyun-three series (FY-3A) is proposed based on the measurements at the frequencies of 50.3 and 53.6 GHz. The cloud liquid water path index (LWP index) is calculated using the brightness temperature at these two channels. Analysis of one case carried out in January2010shows the great consistency be-tween this new algorithm result and the available liquid water path product from the Meteorological Operational satellite A (MetOp-A).In general, about 60% of the global MWTS data are considered to be contaminated by cloud by virtue of the new cloud detection algorithm. A quality control (QC) procedure is applied to MWTS measurements with emphasis on the cloud detection. The QC steps are composed of (i) channel 2 over sea ice, land and coastal field of views (FOVs); (ii) channels 2 and 3 over cloudy FOVs; and (iii) outliers with large differences between observations and model simulations. After QC, MWTS measurements of channels 2–4 agree very well with the model simulations using the National Centres for Environmental Prediction (NCEP) forecast data as radiative transfer model input; the scan biases are reduced significantly, especially at the edges of the swath; and the frequency distributions of the differences between observations and model simulations become more Gaussian-like.


2009 ◽  
Vol 48 (11) ◽  
pp. 2284-2294 ◽  
Author(s):  
Eui-Seok Chung ◽  
Brian J. Soden

Abstract Consistency of upper-tropospheric water vapor measurements from a variety of state-of-the-art instruments was assessed using collocated Geostationary Operational Environmental Satellite-8 (GOES-8) 6.7-μm brightness temperatures as a common benchmark during the Atmospheric Radiation Measurement Program (ARM) First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Water Vapor Experiment (AFWEX). To avoid uncertainties associated with the inversion of satellite-measured radiances into water vapor quantity, profiles of temperature and humidity observed from in situ, ground-based, and airborne instruments are inserted into a radiative transfer model to simulate the brightness temperature that the GOES-8 would have observed under those conditions (i.e., profile-to-radiance approach). Comparisons showed that Vaisala RS80-H radiosondes and Meteolabor Snow White chilled-mirror dewpoint hygrometers are systemically drier in the upper troposphere by ∼30%–40% relative to the GOES-8 measured upper-tropospheric humidity (UTH). By contrast, two ground-based Raman lidars (Cloud and Radiation Test Bed Raman lidar and scanning Raman lidar) and one airborne differential absorption lidar agree to within 10% of the GOES-8 measured UTH. These results indicate that upper-tropospheric water vapor can be monitored by these lidars and well-calibrated, stable geostationary satellites with an uncertainty of less than 10%, and that correction procedures are required to rectify the inherent deficiencies of humidity measurements in the upper troposphere from these radiosondes.


2018 ◽  
Vol 147 (1) ◽  
pp. 85-106 ◽  
Author(s):  
Ting-Chi Wu ◽  
Milija Zupanski ◽  
Lewis D. Grasso ◽  
Christian D. Kummerow ◽  
Sid-Ahmed Boukabara

Abstract Satellite all-sky radiances from the Advanced Technology Microwave Sounder (ATMS) are assimilated into the Hurricane Weather Research and Forecasting (HWRF) Model using the hybrid Gridpoint Statistical Interpolation analysis system (GSI). To extend the all-sky capability recently developed for global applications to HWRF, some modifications in HWRF and GSI are facilitated. In particular, total condensate is added as a control variable, and six distinct hydrometeor habits are added as state variables in hybrid GSI within HWRF. That is, clear-sky together with cloudy and precipitation-affected satellite pixels are assimilated using the Community Radiative Transfer Model (CRTM) as a forward operator that includes hydrometeor information and Jacobians with respect to hydrometeor variables. A single case study with the 2014 Atlantic storm Hurricane Cristobal is used to demonstrate the methodology of extending the global all-sky capability to HWRF due to ATMS data availability. Two data assimilation experiments are carried out. One experiment uses the operational configuration and assimilates ATMS radiances under the clear-sky condition, and the other experiment uses the modified HWRF system and assimilates ATMS radiances under the all-sky condition with the inclusion of total condensate update and cycling. Observed and synthetic Geostationary Operational Environmental Satellite (GOES)-13 data along with Global Precipitation Measurement Mission (GPM) Microwave Imager (GMI) data from the two experiments are used to show that the experiment with all-sky ATMS radiances assimilation has cloud signatures that are supported by observations. In contrast, there is lack of clouds in the initial state that led to a noticeable lag of cloud development in the experiment that assimilates clear-sky radiances.


2016 ◽  
Vol 9 (6) ◽  
pp. 2647-2668 ◽  
Author(s):  
Caroline R. Nowlan ◽  
Xiong Liu ◽  
James W. Leitch ◽  
Kelly Chance ◽  
Gonzalo González Abad ◽  
...  

Abstract. The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.


2016 ◽  
Author(s):  
Francesco De Angelis ◽  
Domenico Cimini ◽  
James Hocking ◽  
Pauline Martinet ◽  
Stefan Kneifel

Abstract. Ground-based microwave radiometers (MWR) offer a new capability to provide continuous observations of the atmospheric thermodynamic state in the planetary boundary layer. Thus, they are potential candidates to supplement radiosonde network and satellite data to improve numerical weather prediction (NWP) models through a variational assimilation of their data. However in order to assimilate MWR observations a fast radiative transfer model is required and such a model is not currently available. This is necessary for going from the model state vector space to the observation space at every observation point. The fast radiative transfer model RTTOV is well accepted in the NWP community, though it was developed to simulate satellite observations only. In this work, the RTTOV code has been modified to allow for simulations of ground-based upward looking microwave sensors. In addition, the Tangent Linear, Adjoint, and K-modules of RTTOV have been adapted to provide Jacobians (i.e. the sensitivity of observations to the atmospheric thermodynamical state) for ground-based geometry. These modules are necessary for the fast minimization of the cost function in a variational assimilation scheme. The proposed ground-based version of RTTOV, called RTTOV-gb, has been validated against accurate and less time-efficient line-by-line radiative transfer models. In the frequency range commonly used for temperature and humidity profiling (22–60 GHz), root-mean-square brightness temperature differences are smaller than typical MWR uncertainties (~ 0.5 K) at all channels used in this analysis. Brightness temperatures (TB) computed with RTTOV-gb from radiosonde profiles have been compared with nearly simultaneous and colocated ground-based MWR observations. Differences between simulated and measured TB are below 0.5 K for all channels except for the water vapor band, where most of the uncertainty comes from instrumental errors. The Jacobians calculated with the K-module of RTTOV-gb have been compared with those calculated with the brute force technique and those from the line-by-line model ARTS. Jacobians are found to be almost identical, except for liquid water content Jacobians for which a 10 % difference between ARTS and RTTOV-gb at transparent channels around 450 hPa is attributed to differences in liquid water absorption models. Finally, RTTOV-gb has been applied as the forward model operator within a 1-Dimensional Variational (1D-Var) software tool in an Observing-System Simulation Experiment (OSSE). For both temperature and humidity profiles, the 1D-Var with RTTOV-gb improves the retrievals with respect to NWP model in the first few kilometers from the ground.


2015 ◽  
Vol 72 (1) ◽  
pp. 430-451 ◽  
Author(s):  
Virendra P. Ghate ◽  
Mark A. Miller ◽  
Bruce A. Albrecht ◽  
Christopher W. Fairall

Abstract Stratocumulus-topped boundary layers (STBLs) observed in three different regions are described in the context of their thermodynamic and radiative properties. The primary dataset consists of 131 soundings from the southeastern Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic, and 83 soundings from the U.S. Southern Great Plains (SGP). A new technique that makes an attempt to preserve the depths of the sublayers within an STBL is proposed for averaging the profiles of thermodynamic and radiative variables. A one-dimensional radiative transfer model known as the Rapid Radiative Transfer Model was used to compute the radiative fluxes within the STBL. The SEP STBLs were characterized by a stronger and deeper inversion, together with thicker clouds, lower free-tropospheric moisture, and higher radiative flux divergence across the cloud layer, as compared to the GRW STBLs. Compared to the STBLs over the marine locations, the STBLs over SGP had higher wind shear and a negligible (−0.41 g kg−1) jump in mixing ratio across the inversion. Despite the differences in many of the STBL thermodynamic parameters, the differences in liquid water path at the three locations were statistically insignificant. The soundings were further classified as well mixed or decoupled based on the difference between the surface and cloud-base virtual potential temperature. The decoupled STBLs were deeper than the well-mixed STBLs at all three locations. Statistically insignificant differences in surface latent heat flux (LHF) between well-mixed and decoupled STBLs suggest that parameters other than LHF are responsible for producing decoupling.


2007 ◽  
Vol 64 (11) ◽  
pp. 3808-3826 ◽  
Author(s):  
Chinnawat Surussavadee ◽  
David H. Staelin

Abstract Brightness temperature histograms observed at 50–191 GHz by the Advanced Microwave Sounding Unit (AMSU) on operational NOAA satellites are shown to be consistent with predictions made using a mesoscale NWP model [the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5)] and a radiative transfer model [TBSCAT/F(λ)] for a global set of 122 storms coincident with the AMSU observations. Observable discrepancies between the observed and modeled histograms occurred when 1) snow and graupel mixing ratios were increased more than 15% and 25%, respectively, or their altitudes increased more than ∼25 mb; 2) the density, F(λ), of equivalent Mie-scattering ice spheres increased more than 0.03 g cm−3; and 3) the two-stream ice scattering increased more than ∼1%. Using the same MM5/TBSCAT/F(λ) model, neural networks were developed to retrieve the following from AMSU and geostationary microwave satellites: hydrometeor water paths, 15-min average surface-precipitation rates, and cell-top altitudes, all with 15-km resolution. Simulated AMSU rms precipitation-rate retrieval accuracies ranged from 0.4 to 21 mm h−1 when grouped by octaves of MM5 precipitation rate between 0.1 and 64 mm h−1, and were ∼3.8 mm h−1 for the octave 4–8 mm h−1. AMSU and geostationary microwave (GEM) precipitation-rate retrieval accuracies for random 50–50 mixtures of profiles simulated with either the baseline or a modified-physics model were largely insensitive to changes in model physics that would be clearly evident in AMSU observations if real. This insensitivity of retrieval accuracies to model assumptions implies that MM5/TBSCAT/F(λ) simulations offer a useful test bed for evaluating alternative millimeter-wave satellite designs and methods for retrieval and assimilation, to the extent that surface effects are limited.


Sign in / Sign up

Export Citation Format

Share Document