scholarly journals High-throughput Evaluation of Epilepsy-associated KCNQ2 Variants Reveals Functional and Pharmacological Heterogeneity

2021 ◽  
Author(s):  
Carlos G Vanoye ◽  
Reshma R Desai ◽  
Zhigang Ji ◽  
Sneha Adusumilli ◽  
Nirvani Jairam ◽  
...  

Hundreds of KCNQ2 variants have been identified by genetic testing of children with early onset epilepsy and/or developmental disability. Voltage-clamp recording from heterologous cells has proved useful for establishing deleterious functional effects of KCNQ2 variants, but procedures adapting these assays for standardized, higher throughput data collection and reporting are lacking. In this study, we employed automated patch clamp recording to assess in parallel the functional and pharmacological properties of 79 missense and 2 in-frame deletion variants of KCNQ2. Among the variants we studied were a training set of 18 pathogenic variants previously studied by voltage-clamp recording, 24 mostly rare population variants, and 39 disease-associated variants with unclear functional effects. Variant KCNQ2 subunits were transiently expressed in a cell line stably expressing KCNQ3 to reconstitute the physiologically relevant channel complex. Variants with severe loss-of-function were also co-expressed 1:1 with WT KCNQ2 in the KCNQ3 cell line to mimic the heterozygous genotype and assess dominant-negative behavior. In total, we analyzed electrophysiological data recorded from 9,480 cells. The functional properties of WT KCNQ2/KCNQ3 channels and pharmacological responses to known blockers and activators determined by automated patch clamp recording were highly concordant with previous findings. Similarly, functional properties of 18 known pathogenic variants largely matched previously published results and the validated automated patch clamp assay. Many of the 39 previously unstudied disease-associated KCNQ2 variants exhibited prominent loss-of-function and dominant-negative effects, providing strong evidence in support of pathogenicity. All variants, exhibit response to retigabine (10 μM), although there were differences in maximal responses. Variants within the ion selectivity filter exhibited the weakest responses whereas retigabine had the strongest effect on gain-of-function variants in the voltage-sensor domain. Our study established a high throughput method to detect deleterious functional consequences of KCNQ2 variants. We demonstrated that dominant-negative loss-of-function is a common mechanism associated with missense KCNQ2 variants but this does not occur with rare population variation in this gene. Importantly, we observed genotype-dependent differences in the response of KCNQ2 variants to retigabine.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Chai-Ann Ng ◽  
Jessica Farr ◽  
Paul Young ◽  
Monique J Windley ◽  
Matthew D Perry ◽  
...  

Abstract KCNH2 is one of the 59 medically actionable genes recommended by the American College of Medical Genetics for reporting of incidental findings from clinical genomic sequencing. However, half of the reported KCNH2 variants in the ClinVar database are classified as variants of uncertain significance. In the absence of strong clinical phenotypes, there is a need for functional phenotyping to help decipher the significance of variants identified incidentally. Here, we report detailed methods for assessing the molecular phenotype of any KCNH2 missense variant. The key components of the assay include quick and cost-effective generation of a bi-cistronic vector to co-express Wild-type (WT) and any KCNH2 variant allele, generation of stable Flp-In HEK293 cell lines and high-throughput automated patch clamp electrophysiology analysis of channel function. Stable cell lines take 3–4 weeks to produce and can be generated in bulk, which will then allow up to 30 variants to be phenotyped per week after 48 h of channel expression. This high-throughput functional genomics assay will enable a much more rapid assessment of the extent of loss of function of any KCNH2 variant.


2019 ◽  
Author(s):  
Chon Lok Lei ◽  
Michael Clerx ◽  
David J. Gavaghan ◽  
Liudmila Polonchuk ◽  
Gary R. Mirams ◽  
...  

ABSTRACTPredicting how pharmaceuticals may affect heart rhythm is a crucial step in drug-development, and requires a deep understanding of a compound’s action on ion channels.In vitrohERG-channel current recordings are an important step in evaluating the pro-arrhythmic potential of small molecules, and are now routinely performed using automated high-throughput patch clamp platforms. These machines can execute traditional voltage clamp protocols aimed at specific gating processes, but the array of protocols needed to fully characterise a current is typically too long to be applied in a single cell. Shorter high-information protocols have recently been introduced which have this capability, but they are not typically compatible with high-throughput platforms. We present a new high-information 15 s protocol to characterise hERG (Kv11.1) kinetics, suitable for both manual and high-throughput systems. We demonstrate its use on the Nanion SyncroPatch 384PE, a 384 well automated patch clamp platform, by applying it to CHO cells stably expressing hERG1a. From these recordings we construct 124 cell-specific variants/parameterisations of a hERG model at 25 °C. A further 8 independent protocols are run in each cell, and are used to validate the model predictions. We then combine the experimental recordings using a hierarchical Bayesian model, which we use to quantify the uncertainty in the model parameters, and their variability from cell to cell, which we use to suggest reasons for the variability. This study demonstrates a robust method to measure and quantify uncertainty, and shows that it is possible and practical to use high-throughput systems to capture full hERG channel kinetics quantitatively and rapidly.Statement of SignificanceWe present a method for high-throughput characterisation of hERG potassium channel kinetics, via fitting a mathematical model to results of over one hundred single cell patch clamp measurements collected simultaneously on an automated voltage clamp platform. The automated patch clamp data are used to parameterise a mathematical ion channel model fully, opening a new era of automated and rapid development of mathematical models from quick and cheap experiments. The method also allows ample data for independent validation of the models and enables us to study experimental variability and propose its origins. In future the method can be applied to characterise changes to hERG currents in different conditions, for instance at different temperatures (see Part II of the study) or under mutations or the action of pharmaceuticals; and should be easily adapted to study many other currents.


2021 ◽  
Author(s):  
Chai-Ann Ng ◽  
Jessica Farr ◽  
Paul Young ◽  
Monique J. Windley ◽  
Matthew D. Perry ◽  
...  

AbstractKCNH2 is one of the 59 medically actionable genes recommended by the American College of Medical Genetics for reporting of incidental findings from clinical genomic sequencing. However, half of the reported KCNH2 variants in the ClinVar database are classified as variants of uncertain significance. In the absence of strong clinical phenotypes, there is a need for functional phenotyping to help decipher the significance of variants identified incidentally. Here, we report detailed methods for assessing the molecular phenotype of any KCNH2 missense variant. The key components of the assay include quick and cost-effective generation of a bicistronic vector to co-express WT and any KCNH2 variant allele, generation of stable Flp-In HEK293 cell lines and high-throughput automated patch-clamp electrophysiology analysis of channel function. Stable cell lines take 3-4 weeks to produce and can be generated in bulk, which will then allow up to 30 variants to be phenotyped per week after 48 hours of channel expression. This high throughput functional genomics assay will enable a much more rapid assessment of the extent of loss of function of any KCNH2 variant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuan Liu ◽  
Hongke Ding ◽  
Tizhen Yan ◽  
Ling Liu ◽  
Lihua Yu ◽  
...  

PACS1 neurodevelopmental disorder (PACS1-NDD) is a category of rare disorder characterized by intellectual disability, speech delay, dysmorphic facial features, and developmental delay. Other various physical abnormalities of PACS1-NDD might involve all organs and systems. Notably, there were only two unique missense mutations [c.607C > T (p.Arg203Trp) and c.608G > A (p.Arg203Gln)] in PACS1 that had been identified as pathogenic variants for PACS1-NDD or Schuurs-Hoeijmakers syndrome (SHMS). Previous reports suggested that these common missense variants were likely to act through dominant-negative or gain-of-function effects manner. It is still uncertain whether the intragenic deletion or duplication in PACS1 will be disease-causing. By using whole-exome sequencing, we first identified a novel heterozygous multi-exon deletion covering exons 12–24 in PACS1 (NM_018026) in four individuals (two brothers and their father and grandfather) in a three-generation family. The younger brother was referred to our center prenatally and was evaluated before and after the birth. Unlike SHMS, no typical dysmorphic facial features, intellectual problems, and structural brain anomalies were observed among these four individuals. The brothers showed a mild hypermyotonia of their extremities at the age of 3 months old and recovered over time. Mild speech and cognitive delay were also noticed in the two brothers at the age of 13 and 27 months old, respectively. However, their father and grandfather showed normal language and cognitive competence. This study might supplement the spectrum of PACS1-NDD and demonstrates that the loss of function variation in PACS1 displays no contributions to the typical SHMS which is caused by the recurrent c.607C > T (p.Arg203Trp) variant.


2021 ◽  
Author(s):  
Ashley L Cook ◽  
Nicolas Wyhs ◽  
Surojit B Sur ◽  
Blair Ptak ◽  
Maria Popoli ◽  
...  

We describe the creation and characterization of an isogenic cell line panel representing common cancer pathways, with multiple features optimized for high-throughput screening. More than 1,800 cell lines from three normal human cells were generated using CRISPR-technologies. Surprisingly, we discovered most of these lines did not result in complete gene inactivation, despite integration of sgRNA at the desired genomic site. However, a subset of the lines harbored true, biallelic disruptions of the targeted tumor suppressor gene, yielding a final panel of 100 well-characterize lines covering 19 pathways frequently subject to loss of function in cancers. This panel included genetic markers optimized for sequence-based ratiometric assays for drug-based screening assays. To illustrate the potential utility of this panel, we developed a multiplexed high-throughput screen that identified Wee1 inhibitor MK-1775 as a selective growth inhibitor of cells with inactivation of TP53. These cell lines and screening approach should prove useful for researchers studying a variety of cellular and biochemical phenomena.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1031-1031
Author(s):  
Maria Giustina Rotordam ◽  
Elisa Fermo ◽  
Nadine Becker ◽  
Wilma Barcellini ◽  
Andrea Brüggemann ◽  
...  

Abstract Piezo1 is a mechanosensitive ion channel supposed to regulate the volume and maintain the structural integrity in Red Blood Cells (RBCs), as gain-of-function mutations in this channel are associated to the RBC disease Hereditary Xerocytosis (Zarychanski et al. Blood 2012; Bae et al. Proceedings of the National Academy of Sciences 2013). Piezo1 is activated by several mechanical forces, including stretching, poking and shear stress and allows Ca2+ and other cations to enter the cell generating an electrical response. In 2015, it has been discovered that Piezo1 is sensitive to a small molecule, Yoda1 (Syeda et al. Elife 2015), which keeps the channel open and affects its inactivation kinetics. This finding has created new possibilities to elucidate Piezo1 gating mechanism and explore its functional significance in physiological and pathophysiological conditions. Here, we present a patient with a novel PIEZO1 mutation (R2110W) and a patch clamp-based high-throughput screening assay for Piezo1 activity. We established a protocol to detect functional Piezo1 mutations upon chemical stimulation by Yoda1, yet were not able to stimulate the channel via mechanical force, i.e. pressure steps and shear-stress. The assay was first developed on Neuro2A (N2A), a neuroblastoma cell-line endogenously expressing Piezo1 channels (kindly provided by Max-Delbrück Center, Berlin), due to larger abundance of Piezo1 channels in these cells. Initial experiments were performed on the Patchliner (Nanion Technologies GmbH, Munich), a medium-throughput automated patch clamp system able to record up to 8 cells at a time. Currents were elicited using a voltage ramp ranging from -100 to +80 mV for 300 ms, the holding potential was set to -60 mV. A significantly increased whole-cell current was observed upon 10 µM Yoda1 application in half of the recorded cells and the resulting Yoda1-induced currents were inhibited by 30 µM gadolinium chloride, a non-specific blocker of stretch-activated channels. The assay was then implemented on the SyncroPatch 384PE (Nanion Technologies GmbH, Munich), capable of recording up to 384 cells in parallel under identical experimental conditions, thus allowing for reliable statistical analysis. Yoda1 responding cells were selected based on strict quality control (QC) criteria, i.e. the seal resistance stability over time. In one example NPC-384 chip 140 out of 384 N2A cells (37%) passed the QC criteria and 85 cells (60% of the valid cells) were considered as Yoda1 responders. Finally, we investigated Piezo1 electrophysiological properties in healthy and patient RBCs carrying the novel PIEZO1 R2110W mutation. Similar to N2A cells, RBCs currents were analyzed and divided into Yoda1 responders and non-responders according to our QC criteria. The increase in whole-cell currents induced by Yoda1 application was significantly higher in patient compared to control RBCs, which was also reflected by a higher number of Yoda1 responders compared to control. Residue R2110W is structurally located in a gating sensitive area of the channel protein suggesting a gain-of-function. This would be in line with previously described mutations in PIEZO1 (Albuisson et al. Nature Communications 2013) and the mild form of anaemia observed in the patient. Furthermore, we excluded any involvement of Gardos channels in the Yoda1-induced currents by comparing measurements in the presence and absence of the specific Gardos channel inhibitor TRAM-34. Altogether, our work demonstrates that high-throughput patch clamping can provide a robust assay to study functional Piezo1 impairments in primary RBCs without expressing the mutated channel protein in a heterologous expression system. Our approach may be used to detect other channelopathies not only in RBCs and may serve as routine screening assay for diseases related to ion channel dysfunctions in general, complementary to gene sequencing. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Kevin T Booth ◽  
Amama Ghaffar ◽  
Muhammad Rashid ◽  
Luke T Hovey ◽  
Mureed Hussain ◽  
...  

AbstractCOCH is the most abundantly expressed gene in the cochlea. Unsurprisingly, mutations in COCH underly deafness in mice and humans. Two forms of deafness are linked to mutations in COCH, the well-established autosomal dominant nonsyndromic hearing loss, with or without vestibular dysfunction (DFNA9) via a gain-of-function/dominant-negative mechanism, and more recently autosomal recessive nonsyndromic hearing loss (DFNB110) via nonsense variants. Using a combination of targeted gene panels, exome sequencing and functional studies, we identified four novel pathogenic variants (two nonsense variants, one missense and one inframe deletion) in COCH as the cause of autosomal recessive hearing loss in a multi-ethnic cohort. To investigate whether the non-truncating variants exert their effect via a loss-of-function mechanism, we used mini-gene splicing assays. Our data showed both the missense and inframe deletion variants altered RNA-splicing by creating an exon splicing silencer and abolishing an exon splicing enhancer, respectively. Both variants create frameshifts and are predicted to result in a null allele. This study confirms the involvement of loss-of-function mutations in COCH in autosomal recessive nonsyndromic hearing loss, expands the mutational landscape of DFNB110 to include coding variants that alter RNA-splicing, and highlights the need to investigate the effect of coding variants on RNA-splicing.


Sign in / Sign up

Export Citation Format

Share Document