scholarly journals Application of Two Conditions of Loss of Stability in Analysis of the Tube Bending Process

2019 ◽  
Vol 24 (4) ◽  
pp. 200-223
Author(s):  
Z. Śloderbach

Abstract In this paper, the derivation of expressions for admissible values of strains and stresses for vertex points of layers subjected to tension during tube bending at bending machines is presented. The conditions of the dispersed and located loss of stability of the bent tube were assumed as criteria of instability. The original element of this paper is the extension of the criterion of strain location in a form of possible initiation of a neck or furrow (introduced by Marciniak for thin plates [1]) to bending thin- and thick-walled metal tubes at bending machines. The conditions of the dispersed and localized loss of stability together with formation of the plane state of deformation (PSD) in the plane stress state (PSS) were assumed as the criteria of instability. The calculation results were presented as graphs being useful nomograms. We present also simple examples of calculations of permissible and critical strains and values of bending angles including and not including displacement of the neutral axis y0, during cold bending metal thin-walled tubes at bending machines for bending angles <0o; 180o>.

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1221
Author(s):  
Lu Bai ◽  
Jun Liu ◽  
Ziang Wang ◽  
Shuanggui Zou

In the field of cold bending, it is necessary to use ball mandrels, especially to bend thin-walled tubes with a small radius. However, the bending process with a ball mandrel is complex and expensive, and it is easy to jam the core ball inside the tube. To solve these issues, we designed two kinds of hollow non-ball mandrel schemes with low stiffness that were suitable for the small radius bending of thin-walled tubes. We evaluated the forming quality of cold bending numerically and the influence of the hollow section length and thickness on the forming indices. Our results showed that the thickness of the hollow section has a greater influence on forming quality than the length. As the hollow section’s thickness increased, the wrinkling rate first declined by approximately 40% and then increased by above 50%. When the thickness was 11 mm in scheme 1 and 13 mm in scheme 2, the wrinkling rate reached minimum values of 1.32% and 1.50%, respectively. As the hollow section’s thickness increased, the flattening rate decreased by more than 60% and the thinning rate increased by about 40%. A multi-objective optimization of forming indices was carried out by ideal point method and grey wolf optimizer. By comparing the forming results before and after optimization, the feasibility of using the proposed hollow mandrel was proved, and the hollow mandrel scheme of standard cylinder is therefore recommended.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1123
Author(s):  
Mehdi Safari ◽  
Ricardo J. Alves de Sousa ◽  
Jalal Joudaki

The laser tube bending process (LTBP) process is a thermal non-contact process for bending tubes with less springback and less thinning of the tube. In this paper, the laser tube bending process will be studied experimentally. The length of irradiation and irradiation scheme are two main affecting process parameters in the LTBP process. For this purpose, different samples according to two main irradiation schemes (Circular irradiating scheme (CIS) and axial irradiating scheme (AIS)) and different lengths of laser beam irradiation (from 4.7 to 28.2 mm) are fabricated. The main bending angle of laser-bent tube, lateral bending angle, ovality, and thickness variations is measured experimentally, and the effects of the irradiating scheme and the length of irradiation are investigated. An 18 mm diameter, 1 mm thick mild steel tube was bent with 1100 Watts laser beam. The results show that for both irradiating schemes, by increasing the irradiating length of the main and lateral bending angle, the ovality and thickness variation ratio of the bent tube are increased. In addition, for a similar irradiating length, the main bending angle with AIS is considerably higher than CIS. The lateral bending angle by AIS is much less than the lateral bending angle with CIS. The results demonstrate that the ovality percentage and the thickness variation ratio for the laser-bent tube obtained by CIS are much more than the values associated with by AIS laser-bent tube.


2021 ◽  
Vol 1 (24) ◽  
Author(s):  
Ekaterina Prokshits ◽  
Sergey Gridnev ◽  
Olga Sotnikova ◽  
Iana Zolotukhina

The task was set, due to the capabilities of modern software systems, to assess the effect of the increase in inelastic deformations under prolonged load action on the loss of stability of thin-walled dome coverings. The study of the dependences of the forms of the loss of stability of dome covering from creep concrete that will help further with optimization calculations when determining of the most influencing parameters of designs. Calculation results of thin-walled concrete dome roof of circular outline under the influence of operational loadings with use of two modern program complexes are given in article. It is investigated intense and deformation condition of dome coverings as a part of construction from position of forecasting of possible forms of loss of stability, with use of opportunities of the final and element «MidasCivil» computer system. In work provisions of the theory of elasticity, mechanics of deformation of solid body, construction mechanics and also methods of mathematical modeling based on application of finite element method are used. The received results give the chance to rationally select geometrical parameters and material of design and also to set structural strength safety factors at the solution of problems of stability of different covers taking into account possible creep of material.


2013 ◽  
Vol 18 (1) ◽  
pp. 235-248 ◽  
Author(s):  
Z. Śloderbach ◽  
J. Pająk

The paper presents an aproximate analytic method for determination of the stored energy of plastic deformation during cold bending of metal tubes at bending machines. Calculations were performed for outer points of the tube layers subjected to tension and compression (the points of maximum strains). The percentage of stored energy related to the plastic strain work was determined and the results were presented in graphs. The influence and importance of the stored energy of plastic deformation on the service life of pipeline bends are discussed.


2014 ◽  
Author(s):  
Erica Liverani ◽  
Alessandro Ascari ◽  
Alessandro Fortunato ◽  
Adrian Lutey

This paper presents the feasibility of an innovative application of laser-assisted bending process. The high strength steel sheets bending, carried out after a laser heat treatment, is studied. Several strategies aimed at obtaining a ductile structure along the bending line, suitable for cold forming, are investigated. The influence of laser processing parameters on the microstructure, hardness and strength of the sheets are discussed and analyzed. In order to predict the temperature and ensure the repeatability and reliability of the process, a model for heat treatment simulation is developed. The study of the experimental data and the integration with the simulation of the heating phase lead to the definition of specific process parameters suitable for achieving a crack-free cold bending of high strength steels.


2005 ◽  
Vol 475-479 ◽  
pp. 3279-3282
Author(s):  
Xia Huang ◽  
Yuan Song Zeng ◽  
Zhi Qiang Li ◽  
Xin Hua Zhang

In this paper, a new cold bending process is presented to form the titanium alloy tubular part with small relative bend radius, that is, its centerline bending radius is less than 2 times the outside diameter of the tube. FEM is applied to simulate the forming process, and at the same time the results, such as the distribution of the stress and the wall thickness, prediction of defects area, the effects of the internal pressure and friction condition on the tube deformation, are also analyzed. Finally, experimental research was preformed. It is found that the numerical results are in good agreement with the experimental values.


2011 ◽  
Vol 473 ◽  
pp. 37-42 ◽  
Author(s):  
Matthias Hermes ◽  
Daniel Staupendahl ◽  
Christoph Becker ◽  
A. Erman Tekkaya

The paper deals with two new processes and developed special machines for profile and tube bending. The first process is a new roll-based machine for three-dimensional bending of profiles with symmetrical and asymmetrical cross-sections that has been developed. Compared to conventional processes like stretch bending, the advantage of Torque Superposed Spatial (TSS) Bending is the kinematic adjustment of the bending contour, leading to higher flexibility and cost efficiency especially in small batch production. The second process is the new process of Incremental Tube Forming (ITF). This process is based on a combination of a spinning process and kinematic free form bending of tubular semi-finished products. It is suitable for bending tubes two- and three-dimensionally to arbitrary contours and for manufacturing tailored tubes. The combined spinning and bending process leads to low bending forces with the possibility of a significant springback reduction.


2010 ◽  
Vol 154-155 ◽  
pp. 202-208 ◽  
Author(s):  
Yi Nan Lai ◽  
Sheng Le Ren ◽  
Zeng Lou Li ◽  
Jun Tao Gu ◽  
Guang Fei Wu

The unloading spring-back of tubes during its manufacturing process shows a strong nonlinearity, which greatly influences the precision of parts. In this paper, the strain distribution of bending tubes was analyzed based on the elasto-plasticity theory, and the theoretical equation for spring-back of tubes was derived. The numerical simulation model for cold tube-bending process was developed with prediction error of 9% compared with experimental results, indicating high reliability of the model. The 12Cr1MoV and 20G tubes were used to analyze the effects of bending angle, bending radius and bending speed on the spring-back of tubes. The prediction equation of spring-back was built, which shows that the spring-back tendency was in accordance with theoretical analysis results. The simulated results show that the spring-back angle is linearly proportional to the bending angle within a certain range. In addition, it is proportional to the relative bending radius and the bending speed.


Sign in / Sign up

Export Citation Format

Share Document