Structural and spectroscopic characterization of an Fe(VI) bis(imido) complex

Science ◽  
2020 ◽  
Vol 370 (6514) ◽  
pp. 356-359 ◽  
Author(s):  
Jorge L. Martinez ◽  
Sean A. Lutz ◽  
Hao Yang ◽  
Jiaze Xie ◽  
Joshua Telser ◽  
...  

High-valent iron species are key intermediates in oxidative biological processes, but hexavalent complexes apart from the ferrate ion are exceedingly rare. Here, we report the synthesis and structural and spectroscopic characterization of a stable Fe(VI) complex (3) prepared by facile one-electron oxidation of an Fe(V) bis(imido) (2). Single-crystal x-ray diffraction of 2 and 3 revealed four-coordinate Fe centers with an unusual “seesaw” geometry. 57Fe Mössbauer, x-ray photoelectron, x-ray absorption, and electron-nuclear double resonance (ENDOR) spectroscopies, supported by electronic structure calculations, support a low-spin (S = 1/2) d3 Fe(V) configuration in 2 and a diamagnetic (S = 0) d2 Fe(VI) configuration in 3. Their shared seesaw geometry is electronically dictated by a balance of Fe-imido σ- and π-bonding interactions.

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Daisuke Ogawa ◽  
Ryo Kitaura ◽  
Takeshi Saito ◽  
Shinobu Aoyagi ◽  
Eiji Nishibori ◽  
...  

Thermally fragile tris(η5-cyclopentadienyl)erbium (ErCp3) molecules are encapsulated in single-wall carbon nanotubes (SWCNTs) with high yield. We realized the encapsulation of ErCp3with high filling ratio by using high quality SWCNTs at an optimized temperature under higher vacuum. Structure determination based on high-resolution transmission electron microscope observations together with the image simulations reveals the presence of almost free rotation of each ErCp3molecule in SWCNTs. The encapsulation is also confirmed by X-ray diffraction. Trivalent character of Er ions (i.e., Er3+) is confirmed by X-ray absorption spectrum.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2016 ◽  
Vol 71 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Oscar E. Piro ◽  
Gustavo A. Echeverría ◽  
Beatriz S. Parajón-Costa ◽  
Enrique J. Baran

AbstractMagnesium acesulfamate, Mg(C4H4NO4S)2·6H2O, was prepared by the reaction of acesulfamic acid and magnesium carbonate in aqueous solution, and characterized by elemental analysis. Its crystal structure was determined by single crystal X-ray diffraction methods. The substance crystallizes in the triclinic space group P1̅ with one molecule per unit cell. The FTIR spectrum of the compound was also recorded and is briefly discussed. Some comparisons with other simple acesulfamate and saccharinate salts are also made.


2019 ◽  
Vol 294 (46) ◽  
pp. 17626-17641 ◽  
Author(s):  
Munkhtsetseg Tsednee ◽  
Madeli Castruita ◽  
Patrice A. Salomé ◽  
Ajay Sharma ◽  
Brianne E. Lewis ◽  
...  

Exposing cells to excess metal concentrations well beyond the cellular quota is a powerful tool for understanding the molecular mechanisms of metal homeostasis. Such improved understanding may enable bioengineering of organisms with improved nutrition and bioremediation capacity. We report here that Chlamydomonas reinhardtii can accumulate manganese (Mn) in proportion to extracellular supply, up to 30-fold greater than its typical quota and with remarkable tolerance. As visualized by X-ray fluorescence microscopy and nanoscale secondary ion MS (nanoSIMS), Mn largely co-localizes with phosphorus (P) and calcium (Ca), consistent with the Mn-accumulating site being an acidic vacuole, known as the acidocalcisome. Vacuolar Mn stores are accessible reserves that can be mobilized in Mn-deficient conditions to support algal growth. We noted that Mn accumulation depends on cellular polyphosphate (polyP) content, indicated by 1) a consistent failure of C. reinhardtii vtc1 mutant strains, which are deficient in polyphosphate synthesis, to accumulate Mn and 2) a drastic reduction of the Mn storage capacity in P-deficient cells. Rather surprisingly, X-ray absorption spectroscopy, EPR, and electron nuclear double resonance revealed that only little Mn2+ is stably complexed with polyP, indicating that polyP is not the final Mn ligand. We propose that polyPs are a critical component of Mn accumulation in Chlamydomonas by driving Mn relocation from the cytosol to acidocalcisomes. Within these structures, polyP may, in turn, escort vacuolar Mn to a number of storage ligands, including phosphate and phytate, and other, yet unidentified, compounds.


Synthesis ◽  
2017 ◽  
Vol 49 (11) ◽  
pp. 2389-2393 ◽  
Author(s):  
Stefanie Pelzer ◽  
Beate Neumann ◽  
Hans-Georg Stammler ◽  
Nikolai Ignat’ev ◽  
Reint Eujen ◽  
...  

This paper describes the synthesis and comprehensive characterization of tetrakis(pentafluoroethyl)germane. In addition to a complete NMR spectroscopic characterization, including the rarely used 73Ge NMR spectroscopy, Ge(C2F5)4 was studied by IR spectroscopy, mass spectrometry as well as X-ray diffraction analysis. A 73Ge NMR investigation as well as an X-ray diffraction study of the related germane Ge(CF3)4 are also included.


2013 ◽  
Vol 77 (7) ◽  
pp. 2941-2953 ◽  
Author(s):  
V. D’Ippolito ◽  
G. B. Andreozzi ◽  
F. Bosi ◽  
U. Hålenius ◽  
L. Mantovani ◽  
...  

AbstractThe crystal chemistry of a natural, gem-quality, blue-grey Zn-rich spinel crystal from Jemaa, Kaduna State, Nigeria, was studied using electron microprobe, single-crystal X-ray diffraction, optical absorption and Raman spectroscopies. The composition of the crystal approaches the gahnite endmember (ZnAl2O4), ∼94 mol.%, with the remainder being dominated by a hercynite component (FeAl2O4). The unit-cell dimension is 8.0850(3) Å and the tetrahedral and octahedral bond distances are determined as T–O 1.9485(6) Å and M–O 1.9137(3) Å. Crystal chemical analysis resulted in the empirical structural formula T(Zn0.94Fe2+0.03Al0.03)M (Al1.96Fe2+0.03Fe3+0.01)O4, which shows Zn and Al almost fully ordered in the tetrahedrally and octahedrally coordinated T and M sites, respectively. Raman spectra obtained using the excitation of the blue 473.1 nm line of a Nd:YAG laser display three of the five Raman-active modes predicted for the general oxide spinel group of minerals. These are the Eg mode at 420.6 cm–1 and the T2g modes at 510 cm–1 and 661 cm–1, due to vibrations in the AlO6 octahedra. Optical absorption spectra recorded in the UV/VIS-NIR-MIR range 2000 29000 cm–1 show a dominant absorption band at ∼5000 cm–1 which is caused by spin-allowed electronic d–d transitions in Fe2+ located at the T sites. The blue-grey hue exhibited by the sample is mainly due to spin-forbidden electronic transitions in TFe2+ and to MFe2+ ↔MFe3+ intervalence charge transfer, and the poor saturation of the colour is due to the small concentration of Fe2+ and Fe3+.


1998 ◽  
Vol 269-272 ◽  
pp. 473-478 ◽  
Author(s):  
Francsco Cardellini ◽  
Vittoria Contini ◽  
Gregorio D'Agostino ◽  
Adriano Filipponi

Sign in / Sign up

Export Citation Format

Share Document