scholarly journals Neurogenic tachykinin mechanisms in experimental nephritis of rats

2020 ◽  
Vol 472 (12) ◽  
pp. 1705-1717
Author(s):  
Kristina Rodionova ◽  
Karl F. Hilgers ◽  
Eva-Maria Paulus ◽  
Gisa Tiegs ◽  
Christian Ott ◽  
...  

AbstractWe demonstrated earlier that renal afferent pathways combine very likely “classical” neural signal transduction to the central nervous system and a substance P (SP)–dependent mechanism to control sympathetic activity. SP content of afferent sensory neurons is known to mediate neurogenic inflammation upon release. We tested the hypothesis that alterations in SP-dependent mechanisms of renal innervation contribute to experimental nephritis. Nephritis was induced by OX-7 antibodies in rats, 6 days later instrumented for recording of blood pressure (BP), heart rate (HR), drug administration, and intrarenal administration (IRA) of the TRPV1 agonist capsaicin to stimulate afferent renal nerve pathways containing SP and electrodes for renal sympathetic nerve activity (RSNA). The presence of the SP receptor NK-1 on renal immune cells was assessed by FACS. IRA capsaicin decreased RSNA from 62.4 ± 5.1 to 21.6 ± 1.5 mV s (*p < 0.05) in controls, a response impaired in nephritis. Suppressed RSNA transiently but completely recovered after systemic administration of a neurokinin 1 (NK1-R) blocker. NK-1 receptors occurred mainly on CD11+ dendritic cells (DCs). An enhanced frequency of CD11c+NK1R+ cell, NK-1 receptor+ macrophages, and DCs was assessed in nephritis. Administration of the NK-1R antagonist aprepitant during nephritis reduced CD11c+NK1R+ cells, macrophage infiltration, renal expression of chemokines, and markers of sclerosis. Hence, SP promoted renal inflammation by weakening sympathoinhibitory mechanisms, while at the same time, substance SP released intrarenally from afferent nerve fibers aggravated immunological processes i.e. by the recruitment of DCs.

1998 ◽  
Vol 275 (3) ◽  
pp. F441-F446 ◽  
Author(s):  
Gerald F. DiBona ◽  
Susan Y. Jones

The effects of peripheral thermal receptor stimulation (tail in hot water, n = 8, anesthetized) and cardiac baroreceptor stimulation (volume loading, n = 8, conscious) on components of synchronized renal sympathetic nerve activity (RSNA) were examined in rats. The peak height and peak frequency of synchronized RSNA were determined. The renal sympathoexcitatory response to peripheral thermal receptor stimulation was associated with an increase in the peak height. The renal sympathoinhibitory response to cardiac baroreceptor stimulation was associated with a decrease in the peak height. Although heart rate was significantly increased with peripheral thermal receptor stimulation and significantly decreased with cardiac baroreceptor stimulation, peak frequency was unchanged. As peak height reflects the number of active fibers, reflex increases and decreases in synchronized RSNA are mediated by parallel increases and decreases in the number of active renal nerve fibers rather than changes in the centrally based rhythm or peak frequency. The increase in the number of active renal nerve fibers produced by peripheral thermal receptor stimulation reflects the engagement of a unique group of silent renal sympathetic nerve fibers with a characteristic response pattern to stimulation of arterial baroreceptors, peripheral and central chemoreceptors, and peripheral thermal receptors.


1992 ◽  
Vol 263 (3) ◽  
pp. H792-H797
Author(s):  
A. W. Cowley ◽  
A. G. Brice ◽  
M. M. Skelton

Recent studies in our laboratory indicated that a blunted (40–50%) renal excretory response to isotonic intravenous saline loads occurred in conscious, renal-denervated dogs after 70% of the atrial mass was removed. The blunted responses could not be explained by differences in the responses of arterial pressure, renal nerve activity, or by measured changes of plasma immunoreactive atrial natriuretic peptide (iANP), arginine vasopressin (AVP), plasma renin activity (PRA), or aldosterone (Aldo). The present study was designed to determine whether the central nervous system (CNS) was the source of an unidentified substance, which could account for the blunting of the urine excretory response seen in the atrial-resected dogs. Renal denervation was performed in all dogs to eliminate alterations in efferent renal sympathetic nerve activity derived from reflexes activated during volume expansion. Cardiac denervation (CDX) was used to eliminate sensory cardiac afferent nerve activity to the CNS. A group of five renal-denervated dogs was given an isotonic volume load (400 ml/30 min) before and after complete CDX. Plasma AVP was fixed at normal plasma levels of 3 pg/ml by continuous intravenous infusion. Na and H2O excretion were not different in renal-denervated dogs compared with combined renal and cardiac denervation during the 5 h after the saline load. Plasma AVP and Aldo were unchanged with the volume loads, although PRA rose gradually over the 5 h after the saline loads. Plasma iANP increased transiently in the combined renal and cardiac-denervated state rising from a control of 65–120 pg/ml at the end of the load period.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 293 (4) ◽  
pp. R1561-R1572 ◽  
Author(s):  
Ulla C. Kopp ◽  
Michael Z. Cicha ◽  
Lori A. Smith ◽  
Jan Mulder ◽  
Tomas Hökfelt

Increasing efferent renal sympathetic nerve activity (ERSNA) increases afferent renal nerve activity (ARNA). To test whether the ERSNA-induced increases in ARNA involved norepinephrine activating α-adrenoceptors on the renal sensory nerves, we examined the effects of renal pelvic administration of the α1- and α2-adrenoceptor antagonists prazosin and rauwolscine on the ARNA responses to reflex increases in ERSNA (placing the rat's tail in 49°C water) and renal pelvic perfusion with norepinephrine in anesthetized rats. Hot tail increased ERSNA and ARNA, 6,930 ± 900 and 4,870 ± 670%·s (area under the curve ARNA vs. time). Renal pelvic perfusion with norepinephrine increased ARNA 1,870 ± 210%·s. Immunohistochemical studies showed that the sympathetic and sensory nerves were closely related in the pelvic wall. Renal pelvic perfusion with prazosin blocked and rauwolscine enhanced the ARNA responses to reflex increases in ERSNA and norepinephrine. Studies in a denervated renal pelvic wall preparation showed that norepinephrine increased substance P release, from 8 ± 1 to 16 ± 1 pg/min, and PGE2 release, from 77 ± 11 to 161 ± 23 pg/min, suggesting a role for PGE2 in the norepinephrine-induced activation of renal sensory nerves. Prazosin and indomethacin reduced and rauwolscine enhanced the norepinephrine-induced increases in substance P and PGE2. PGE2 enhanced the norepinephrine-induced activation of renal sensory nerves by stimulation of EP4 receptors. Interaction between ERSNA and ARNA is modulated by norepinephrine, which increases and decreases the activation of the renal sensory nerves by stimulating α1- and α2-adrenoceptors, respectively, on the renal pelvic sensory nerve fibers. Norepinephrine-induced activation of the sensory nerves is dependent on renal pelvic synthesis/release of PGE2.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Fang Zhang ◽  
Luyi Wu ◽  
Jimeng Zhao ◽  
Tingting Lv ◽  
Zhihai Hu ◽  
...  

It is currently accepted that the neural transduction pathways of gastrointestinal (GI) visceral pain include the peripheral and central pathways. Existing research on the neurological mechanism of electroacupuncture (EA) in the treatment of GI visceral pain has primarily been concerned with the regulation of relevant transduction pathways. The generation of pain involves a series of processes, including energy transduction of stimulatory signals in the sensory nerve endings (signal transduction), subsequent conduction in primary afferent nerve fibers of dorsal root ganglia, and transmission to spinal dorsal horn neurons, the ascending transmission of sensory signals in the central nervous system, and the processing of sensory signals in the cerebral cortex. Numerous peripheral neurotransmitters, neuropeptides, and cytokines participate in the analgesic process of EA in visceral pain. Although EA has excellent efficacy in the treatment of GI visceral pain, the pathogenesis of the disease and the analgesic mechanism of the treatment have not been elucidated. In recent years, research has examined the pathogenesis of GI visceral pain and its influencing factors and has explored the neural transduction pathways of this disease.


Author(s):  
Monika Equit ◽  
Justine Niemczyk ◽  
Anna Kluth ◽  
Carla Thomas ◽  
Mathias Rubly ◽  
...  

Abstract. Objective: Fecal incontinence and constipation are common disorders in childhood. The enteric nervous system and the central nervous system are highly interactive along the brain-gut axis. The interaction is mainly afferent. These afferent pathways include centers that are involved in the central nervous processing of emotions as the mid/posterior insula and the anterior cingulate cortex. A previous study revealed altered processing of emotions in children with fecal incontinence. The present study replicates these results. Methods: In order to analyze the processing of emotions, we compared the event-related potentials of 25 children with fecal incontinence and constipation to those of 15 control children during the presentation of positive, negative, and neutral pictures. Results: Children with fecal incontinence and constipation showed altered processing of emotions, especially in the parietal and central cortical regions. Conclusions: The main study results of the previous study were replicated, increasing the certainty and validity of the findings.


2011 ◽  
Vol 300 (1) ◽  
pp. C58-C64 ◽  
Author(s):  
Rui-Fang Yang ◽  
Jing-Xiang Yin ◽  
Yu-Long Li ◽  
Matthew C. Zimmerman ◽  
Harold D. Schultz

Actions of angiotensin-(1–7) [Ang-(1–7)], a heptapeptide of the renin-angiotensin system, in the periphery are mediated, at least in part, by activation of nitric oxide (NO) synthase (NOS) and generation NO·. Studies of the central nervous system have shown that NO· acts as a sympathoinhibitory molecule and thus may play a protective role in neurocardiovascular diseases associated with sympathoexcitation, such as hypertension and heart failure. However, the contribution of NO in the intraneuronal signaling pathway of Ang-(1–7) and the subsequent modulation of neuronal activity remains unclear. Here, we tested the hypothesis that neuronal NOS (nNOS)-derived NO· mediates changes in neuronal activity following Ang-(1–7) stimulation. For these studies, we used differentiated catecholaminergic (CATH.a) neurons, which we show express the Ang-(1–7) receptor (Mas R) and nNOS. Stimulation of CATH.a neurons with Ang-(1–7) (100 nM) increased intracellular NO levels, as measured by 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM) fluorescence and confocal microscopy. This response was significantly attenuated in neurons pretreated with the Mas R antagonist (A-779), a nonspecific NOS inhibitor (nitro-l-arginine methyl ester), or an nNOS inhibitor ( S-methyl-l-thiocitrulline, SMTC), but not by endothelial NOS (eNOS) or inhibitory NOS (iNOS) inhibition {l- N-5-(1-iminoethyl)ornithine (l-NIO) and 1400W, respectively}. To examine the effect of Ang-(1–7)-NO· signaling on neuronal activity, we recorded voltage-gated outward K+ current ( IKv) in CATH.a neurons using the whole cell configuration of the patch-clamp technique. Ang-(1–7) significantly increased IKv, and this response was inhibited by A-779 or S-methyl-l-thiocitrulline, but not l-NIO or 1400W. These findings indicate that Ang-(1–7) is capable of increasing nNOS-derived NO· levels, which in turn, activates hyperpolarizing IKv in catecholaminergic neurons.


CNS Spectrums ◽  
2005 ◽  
Vol 10 (4) ◽  
pp. 298-308 ◽  
Author(s):  
Walter Zieglgänsberger ◽  
Achim Berthele ◽  
Thomas R. Tölle

AbstractNeuropathic pain is defined as a chronic pain condition that occurs or persists after a primary lesion or dysfunction of the peripheral or central nervous system. Traumatic injury of peripheral nerves also increases the excitability of nociceptors in and around nerve trunks and involves components released from nerve terminals (neurogenic inflammation) and immunological and vascular components from cells resident within or recruited into the affected area. Action potentials generated in nociceptors and injured nerve fibers release excitatory neurotransmitters at their synaptic terminals such as L-glutamate and substance P and trigger cellular events in the central nervous system that extend over different time frames. Short-term alterations of neuronal excitability, reflected for example in rapid changes of neuronal discharge activity, are sensitive to conventional analgesics, and do not commonly involve alterations in activity-dependent gene expression. Novel compounds and new regimens for drug treatment to influence activity-dependent long-term changes in pain transducing and suppressive systems (pain matrix) are emerging.


2021 ◽  
Vol 27 ◽  
Author(s):  
Jennifer Cadenas-Fernández ◽  
Pablo Ahumada-Pascual ◽  
Luis Sanz Andreu ◽  
Ana Velasco

: Mammalian nervous systems depend crucially on myelin sheaths covering the axons. In the central nervous system, myelin sheaths consist of lipid structures which are generated from the membrane of oligodendrocytes (OL). These sheaths allow fast nerve transmission, protect axons and provide them metabolic support. In response to specific traumas or pathologies, these lipid structures can be destabilized and generate demyelinating lesions. Multiple sclerosis (MS) is an example of a demyelinating disease in which the myelin sheaths surrounding the nerve fibers of the brain and spinal cord are damaged. MS is the leading cause of neurological disability in young adults in many countries, and its incidence has been increasing in recent decades. Related to its etiology, it is known that MS is an autoimmune and inflammatory CNS disease. However, there are no effective treatments for this disease and the immunomodulatory therapies that currently exist have proven limited success since they only delay the progress of the disease. Nowadays, one of the main goals in the MS research is to find treatments which allows the recovery of neurological disabilities due to demyelination. To this end, different approaches, such as modulating intracellular signaling or regulating the lipid metabolism of OLs, are being considered. Here, in addition to immunosuppressive or immunomodulatory drugs that reduce the immune response against myelin sheaths, we review a diverse group of drugs that promotes endogenous remyelination in MS patients and whose use may be interesting as potential therapeutic agents in MS disease. To this end, we compile specific treatments against MS that are currently in the market with remyelination strategies which have entered into human clinical trials for future reparative MS therapies. The method used in this study is a systematic literature review on PubMed, Web of Science and Science Direct databases up to May 31, 2020. To narrow down the search results in databases, more specific keywords, such as, “myelin sheath”, “remyelination”, “demyelination”, “oligodendrocyte” and “lipid synthesis” were used to focus the search. We favoured papers published after January, 2015, but did not exclude earlier seminal papers.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Fernanda R Marins ◽  
Aline C Oliveira ◽  
Fatimunnisa Qadri ◽  
Natalia Alenina ◽  
Michael Bader ◽  
...  

In the course of experiments aimed to evaluate the immunofluorescence distribution of MrgD receptors we observed the presence of immunoreactivity for the MrgD protein in the Insular Cortex. In order to evaluate the functional significance of this finding, we investigated the cardiovascular effects produced by the endogenous ligand of MrgD, alamandine, in this brain region. Urethane (1.4g/kg) anesthetized rats were instrumented for measurement of MAP, HR and renal sympathetic nerve activity (RSNA). Unilateral microinjection of alamandine (40 pmol/100nl), Angiotensin-(1-7) (40pmol/100nl), Mas/MrgD antagonista D-Pro7-Ang-1-7 (50pmol/100nl), Mas agonist A779 (100 pmol/100nl) or vehicle (0,9% NaCl) were made in different rats (N=4-6 per group) into posterior insular cortex (+1.5mm rostral to the bregma). Microinjection of alamandine in this region produced a long-lasting (> 18 min) increase in MAP (Δ saline= -2±1 vs. alamandine= 12±2 mmHg, p< 0.05) associated to increases in HR (Δ saline= 2±2 vs. alamandine= 35±5 bpm; p< 0.05) and in the amplitude of renal nerve discharges (Δ saline = -2±1 vs. alamandine= 35±5.5 % of the baseline; p< 0.05). Strikingly, an equimolar dose of angiotensin-(1-7) did not produce any change in MAP or HR (Δ MAP=-0.5±0.3 mmHg and +2.7±1.2 bpm, respectively; p> 0.05) and only a slight increase in RSNA (Δ =7.3±3.2 %) . In keeping with this observation the effects of alamandine were not significantly influenced by A-779 (Δ MAP=+13± 2.5 mmHg, Δ HR= +26±3.6 bpm; Δ RSNA = 25± 3.4%) but completely blocked by the Mas/MrgD antagonist D-Pro7-Ang-(1-7) (Δ MAP=+0 ± 1 mmHg Δ HR= +4±2.6 bpm; Δ RSNA = 0.5± 2.2 %). Therefore, we have identified a brain region in which alamandine/MrgD receptors but not Ang-(1-7)/Mas could be involved in the modulation of cardiovascular-related neuronal activity. This observation also suggests that alamandine might possess unique effects unrelated to Ang-(1-7) in the brain.


Sign in / Sign up

Export Citation Format

Share Document