Fabrication, modeling, and characterization of soft twisting electrothermal actuators with directly printed oblique heater

Author(s):  
Yang Cao ◽  
Jingyan Dong

Abstract Soft electrothermal actuators have drawn extensive attention in recent years for their promising applications in biomimetic and biomedical areas. Most soft electrothermal actuators reported so far demonstrated uniform bending deformation, due to the deposition based fabrication of the conductive heater layer from nanomaterial-based solutions, which generally provides uniform heating capacity and uniform bending deformation. In this paper, a soft electrothermal actuator that can provide twisting deformation was designed and fabricated. A metallic microfilament heater of the soft twisting actuator was directly printed using electrohydrodynamic (EHD) printing, and embedded between two structural layers, a polyimide (PI) film and a polydimethylsiloxane (PDMS) layer, with distinct thermal expansion properties. Assisted by the direct patterning capabilities of EHD printing, a skewed heater pattern was designed and printed. This skewed heater pattern not only produces a skewed parallelogram-shaped temperature field, but also changes the stiffness anisotropy of the actuator, leading to twisting deformation with coupled bending. A theoretical kinematic model was built for the twisting actuator to describe its twisting deformation under different actuation effects. Based on that model, influence of design parameters on the twisting angle and motion trajectory of the twisting actuator were studied and validated by experiments. Finite element analysis (FEA) was utilized for the thermal and deformation analysis of the actuator. The fabricated twisting actuator was characterized on its heating and twisting performance at different supply voltages. Using three twisting actuators, a soft gripper was designed and fabricated to implement pick-and-place operations of delicate objects.

2020 ◽  
Vol 14 ◽  
Author(s):  
Osama Bedair

Background: Modular steel buildings (MSB) are extensively used in petrochemical plants and refineries. Limited guidelines are available in the industry for analysis and design of (MSB) subject to accidental vapor cloud explosions (VCEs). Objectives: The paper presents simplified engineering model for modular steel buildings (MSB) subject to accidental vapor cloud explosions (VCEs) that are extensively used in petrochemical plants and refineries. Method: A Single degree of freedom (SDOF) dynamic model is utilized to simulate the dynamic response of primary building components. Analytical expressions are then provided to compute the dynamic load factors (DLF) for critical building elements. Recommended foundation systems are also proposed to install the modular building with minimum cost. Results: Numerical results are presented to illustrate the dynamic response of (MSB) subject to blast loading. It is shown that (DLF)=1.6 is attained at (td/t)=0.4 for front wall (W1) with (td/T)=1.25. For side walls (DLF)=1.41 and is attained at (td/t)=0.6. Conclusions: The paper presented simplified tools for analysis and design of (MSB) subject accidental vapor cloud blast explosions (VCEs). The analytical expressions can be utilized by practitioners to compute the (MSB) response and identify the design parameters. They are simple to use compared to Finite Element Analysis.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1468
Author(s):  
Luis Nagua ◽  
Carlos Relaño ◽  
Concepción A. Monje ◽  
Carlos Balaguer

A soft joint has been designed and modeled to perform as a robotic joint with 2 Degrees of Freedom (DOF) (inclination and orientation). The joint actuation is based on a Cable-Driven Parallel Mechanism (CDPM). To study its performance in more detail, a test platform has been developed using components that can be manufactured in a 3D printer using a flexible polymer. The mathematical model of the kinematics of the soft joint is developed, which includes a blocking mechanism and the morphology workspace. The model is validated using Finite Element Analysis (FEA) (CAD software). Experimental tests are performed to validate the inverse kinematic model and to show the potential use of the prototype in robotic platforms such as manipulators and humanoid robots.


2013 ◽  
Vol 448-453 ◽  
pp. 2114-2119 ◽  
Author(s):  
Izzeldin Idris Abdalla ◽  
Taib Ibrahim ◽  
Nursyarizal Mohd Nor

This paper describes a design optimization to achieve optimal performance of a two novel single-phase short-stroke tubular linear permanent magnet motors (TLPMMs) with rectangular and trapezoidal permanent magnets (PMs) structures. The motors equipped with a quasi-Halbach magnetized moving-magnet armature and slotted stator with a single-slot carrying a single coil. The motors have been developed for reciprocating compressor applications such as household refrigerators. It is observed that the TLPMM efficiency can be optimized with respect to the leading design parameters (dimensional ratios). Furthermore, the influence of mover back iron is investigated and the loss of the motor is computed. Finite element analysis (FEA) is employed for the optimization, and the optimal values of the ratio of the axial length of the radially magnetized magnets to the pole pitch as well as the ratio of the PMs outer radius-to-stator outer radius (split ratio), are identified.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


2021 ◽  
pp. 1-30
Author(s):  
Weijun Shen ◽  
Yang Cao ◽  
Xuepeng Jiang ◽  
Zhan Zhang ◽  
Gül E. Okudan Kremer ◽  
...  

Abstract Origami structures, which were inspired by traditional paper folding arts, have been applied for engineering problems for the last two decades. Origami-based thin-wall tubes have been extensively investigated under axial loadings. However, less has been done with radial stiffness as one of the critical mechanical properties of a tubular structure working under lateral loadings. In this study, the radial stiffness of novel thin-wall tubular structures based on origami patterns have been studied with compression tests and finite element analysis (FEA) simulations. The results show that the radial stiffness of an origami-inspired tube can achieve about 27.1 times that of a circular tube with the same circumcircle diameter (100 mm), height (60 mm), and wall-thickness (2 mm). Yoshimura, Kresling, and modified Yoshimura patterns are selected as the basic frames, upon which the influences of different design parameters are tested and discussed. Given that the weight can vary due to different designs, the stiffness-to-weight ratio is also calculated. The origami-inspired tubular structures with superior stiffness performances are obtained and can be extended to crashworthy structures, functional structures, and stiffness enhancement with low structural weight.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Sina Hamian ◽  
Andrew M. Gauffreau ◽  
Timothy Walsh ◽  
Jungchul Lee ◽  
Keunhan Park

This paper reports the frequency-dependent electrothermal behaviors of a freestanding doped-silicon heated microcantilever probe operating under periodic (ac) Joule heating. We conducted a frequency-domain finite-element analysis (FEA) and compared the steady periodic solution with 3ω experiment results. The computed thermal transfer function of the cantilever accurately predicts the ac electrothermal behaviors over a full spectrum of operational frequencies, which could not be accomplished with the 1D approximation. In addition, the thermal transfer functions of the cantilever in vacuum and in air were compared, through which the frequency-dependent heat transfer coefficient of the air was quantified. With the developed FEA model, design parameters of the cantilever (i.e., the size and the constriction width of the cantilever heater) and their effects on the ac electrothermal behaviors were carefully investigated. Although this work focused on doped-Si heated microcantilever probes, the developed FEA model can be applied for the ac electrothermal analysis of general microelectromechanical systems.


2013 ◽  
Vol 313-314 ◽  
pp. 1038-1041
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Chao Li

According to uncertainty of the design parameters for large span truss of installing wave-maker, in order to avoid the waste of materials,the truss is analyzed based on the finite element analysis software ANSYS to find out its weaknesses and various parts of the deformation. On the premise of ensuring the intensity and stiffness, the weight of the truss is reduced by adjusting its sizes and selecting different profiles, so as to achieve the optimization of the truss of installing wave-maker.


2011 ◽  
Vol 228-229 ◽  
pp. 1035-1038
Author(s):  
Zhi Yong Hao ◽  
Jun Mao

Using finite element analysis software ANSYS/ LS-DYNA, establishing the plow cutting coal seam 3D simulation model, simulating plow bit cutting coal seam dynamic process. under study, obtaining plow bit the cutting resistance, plow speed of time process curve, analyzing the influence on cutting energy consumption of the different cutting depth, separation distance and width, reaching the rule of cutting energy consumption changing with plow bits’ structure parameter and design parameters, in order to reduce the energy consumption and resistance, cutting depth and plow bits spacing ought to be selected by the real coal seam face conditions.


1986 ◽  
Vol 30 (4) ◽  
pp. 920-928
Author(s):  
Yoshinobu Maeda ◽  
Masafumi Mori ◽  
Sadami Tsutsumi ◽  
Toshihiro Chinzaka ◽  
Masataka Minoura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document