amyloid toxicity
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 48)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Archita Khaire ◽  
Courtney E Wimberly ◽  
Eleanor C Semmes ◽  
Jillian H Hurst ◽  
Kyle M Walsh

Background: Genome-wide association studies (GWAS) have identified common, heritable alleles that increase late-onset Alzheimer's disease (LOAD) risk. We recently published an analytic approach to integrate GWAS and phenome-wide association study (PheWAS) data, enabling identification of candidate traits and trait-associated variants impacting disease risk, and apply it here to LOAD. Methods: PheWAS was performed for 23 known LOAD-associated single nucleotide polymorphisms (SNPs) and 4:1 matched control SNPs using UK Biobank data. Traits enriched for association with LOAD SNPs were ascertained and used to identify trait-associated candidate SNPs to be tested for association with LOAD risk (17,008 cases; 37,154 controls). Results: LOAD-associated SNPs were significantly enriched for associations with 6/778 queried traits, including three platelet traits. The strongest enrichment was for platelet distribution width (PDW) (P=1.2x10-5), but no consistent direction of effect was observed between increased PDW and LOAD susceptibility across variants or in Mendelian randomization analysis. Of 384 PDW-associated SNPs identified by prior GWAS, 36 were nominally associated with LOAD risk and 5 survived false-discovery rate correction for multiple testing. Associations confirmed known LOAD risk loci near PICALM, CD2AP, SPI1, and NDUFAF6, and identified a novel risk locus in the epidermal growth factor receptor (EGFR) gene. Conclusions: Through integration of GWAS and PheWAS data, we identify substantial pleiotropy between genetic determinants of LOAD and of platelet morphology, and for the first time implicate EGFR - a mediator of Beta amyloid toxicity - in Alzheimer's disease susceptibility.


2021 ◽  
Vol 22 (24) ◽  
pp. 13178
Author(s):  
Duc Le ◽  
Lindsay Brown ◽  
Kundan Malik ◽  
Shin Murakami

A 2018 report from the American Heart Association shows that over 103 million American adults have hypertension. The angiotensin-converting enzyme (ACE) (EC 3.4.15.1) is a dipeptidyl carboxylase that, when inhibited, can reduce blood pressure through the renin–angiotensin system. ACE inhibitors are used as a first-line medication to be prescribed to treat hypertension, chronic kidney disease, and heart failure, among others. It has been suggested that ACE inhibitors can alleviate the symptoms in mouse models. Despite the benefits of ACE inhibitors, previous studies also have suggested that genetic variants of the ACE gene are risk factors for Alzheimer’s disease (AD) and other neurological diseases, while other variants are associated with reduced risk of AD. In mice, ACE overexpression in the brain reduces symptoms of the AD model systems. Thus, we find two opposing effects of ACE on health. To clarify the effects, we dissect the functions of ACE as follows: (1) angiotensin-converting enzyme that hydrolyzes angiotensin I to make angiotensin II in the renin–angiotensin system; (2) amyloid-degrading enzyme that hydrolyzes beta-amyloid, reducing amyloid toxicity. The efficacy of the ACE inhibitors is well established in humans, while the knowledge specific to AD remains to be open for further research. We provide an overview of ACE and inhibitors that link a wide variety of age-related comorbidities from hypertension to AD to aging. ACE also serves as an example of the middle-life crisis theory that assumes deleterious events during midlife, leading to age-related later events.


2021 ◽  
Author(s):  
Gefei Chen ◽  
Yuniesky Andrade-Talavera ◽  
Xueying Zhong ◽  
Sameer Hassan ◽  
Henrik Biverstal ◽  
...  

Proteins can self-assemble into amyloid fibrils or amorphous aggregates and thereby cause disease. Molecular chaperones can prevent both these types of protein aggregation, but the respective mechanisms are not fully understood. The BRICHOS domain constitutes a disease-associated small heat shock protein-like chaperone family, with activities against both amyloid toxicity and amorphous protein aggregation. Here, we show that the activity of two BRICHOS domain families against Alzheimer’s disease associated amyloid-β neurotoxicity to mouse hippocampi in vitro depends on a conserved aspartate residue, while the ability to suppress amorphous protein aggregation is unchanged by Asp to Asn mutations. The conserved Asp in its ionized state promotes structural flexibility of the BRICHOS domain and has a pKa value between pH 6.0–7.0, suggesting that chaperone effects against amyloid toxicity can be affected by physiological pH variations. Finally, the Asp is evolutionarily highly conserved in >3000 analysed BRICHOS domains but is replaced by Asn in some BRICHOS families and animal species, indicating independent evolution of molecular chaperone activities against amyloid fibril formation and non-fibrillar amorphous protein aggregation.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1657
Author(s):  
Heeyoung Kang ◽  
Hyun Joo Shin ◽  
Hyeong Seok An ◽  
Zhen Jin ◽  
Jong Youl Lee ◽  
...  

Lipocalin-2 (LCN2) is an inflammatory protein with diverse functions in the brain. Although many studies have investigated the mechanism of LCN2 in brain injuries, the effect of LCN2 on amyloid-toxicity-related memory deficits in a mouse model of Alzheimer’s disease (AD) has been less studied. We investigated the role of LCN2 in human AD patients using a mouse model of AD. We created an AD mouse model by injecting amyloid-beta oligomer (AβO) into the hippocampus. In this model, animals exhibited impaired learning and memory. We found LCN2 upregulation in the human brain frontal lobe, as well as a positive correlation between white matter ischemic changes and serum LCN2. We also found increased astrocytic LCN2, microglia activation, iron accumulation, and blood–brain barrier disruption in AβO-treated hippocampi. These findings suggest that LCN2 is involved in a variety of amyloid toxicity mechanisms, especially neuroinflammation and oxidative stress.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2748
Author(s):  
Tohid Siddiqui ◽  
Prabesh Bhattarai ◽  
Stanislava Popova ◽  
Mehmet Ilyas Cosacak ◽  
Sanjeev Sariya ◽  
...  

Neurogenesis decreases in Alzheimer’s disease (AD) patients, suggesting that restoring the normal neurogenic response could be a disease modifying intervention. To study the mechanisms of pathology-induced neuro-regeneration in vertebrate brains, zebrafish is an excellent model due to its extensive neural regeneration capacity. Here, we report that Kynurenic acid (KYNA), a metabolite of the amino acid tryptophan, negatively regulates neural stem cell (NSC) plasticity in adult zebrafish brain through its receptor, aryl hydrocarbon receptor 2 (Ahr2). The production of KYNA is suppressed after amyloid-toxicity through reduction of the levels of Kynurenine amino transferase 2 (KAT2), the key enzyme producing KYNA. NSC proliferation is enhanced by an antagonist for Ahr2 and is reduced with Ahr2 agonists or KYNA. A subset of Ahr2-expressing zebrafish NSCs do not express other regulatory receptors such as il4r or ngfra, indicating that ahr2-positive NSCs constitute a new subset of neural progenitors that are responsive to amyloid-toxicity. By performing transcriptome-wide association studies (TWAS) in three late onset Alzheimer disease (LOAD) brain autopsy cohorts, we also found that several genes that are components of KYNA metabolism or AHR signaling are differentially expressed in LOAD, suggesting a strong link between KYNA/Ahr2 signaling axis to neurogenesis in LOAD.


Author(s):  
Duc Le ◽  
Lindsay Brown ◽  
Kundan Malik ◽  
Shin Murakami

A recent report from the American Heart Association in 2018 shows that over 103 million American adults have hypertension. The angiotensin-converting enzyme (ACE) (EC 3.4.15.1) is a dipeptidyl carboxylase that, when inhibited, can reduce blood pressure through the renin-angiotensin system. ACE inhibitors are used as a first-line medication to be prescribed to treat hypertension, chronic kidney disease, heart failure among others. It has been suggested that ACE inhibitors can reduce the symptoms in mouse models. Despite the benefits of ACE inhibitors, previous studies also have suggested that alterations in the ACE gene are risk factors for Alzheimer’s disease (AD) and other neurological diseases. In mice, overexpression of ACE in the brain reduces symptoms of the AD-model systems. Thus, we find opposing effects of ACE on health. To clarify the effects, we dissect the functions of ACE as follows: (1) angiotensin-converting enzyme that hydrolyzes angiotensin I to make angiotensin II in the renin-angiotensin system; (2) amyloid-degrading enzyme that can hydrolyze beta-amyloid and reduce amyloid toxicity. The efficacy of the ACE inhibitors is well established in humans, while the knowledge specific to AD remains to be open for further research. We provide an overview of ACE and inhibitors that link a wide variety of age-related comorbidities from hypertension to Alzheimer’s disease to aging. ACE also serves as an example of the middle-life crisis theory that assumes deleterious events during the midlife, leading to age-related later events.


Author(s):  
Carine Marmentini ◽  
Renato C. S. Branco ◽  
Antonio C. Boschero ◽  
Mirian A. Kurauti

2021 ◽  
Vol 13 ◽  
Author(s):  
Benoit de Pins ◽  
Tiago Mendes ◽  
Albert Giralt ◽  
Jean-Antoine Girault

Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.


2021 ◽  
Author(s):  
Henry Patrick Oamen ◽  
Nathaly Romero Romero ◽  
Philip Knuckles ◽  
Juha Saarikangas ◽  
Yuhong Dong ◽  
...  

Most neurodegenerative diseases such as Alzheimer's disease are proteinopathies linked to the toxicity of amyloid oligomers. Treatments to delay or cure these diseases are lacking. Using budding yeast, we report that the natural lipid tripentadecanoin induces expression of the nitric oxide oxidoreductase Yhb1 to prevent the formation of protein aggregates during aging and extends replicative lifespan. In mammals, tripentadecanoin induces expression of the Yhb1 orthologue, neuroglobin, to protect neurons against amyloid toxicity. Tripentadecanoin also rescues photoreceptors in a mouse model of retinal degeneration and retinal ganglion cells in a Rhesus monkey model of optic atrophy. Together, we propose that tripentadecanoin affects p-bodies to induce neuroglobin expression and offers a potential treatment for proteinopathies and retinal neurodegeneration.


2021 ◽  
Vol 22 (12) ◽  
pp. 6355
Author(s):  
Martin Tolar ◽  
John Hey ◽  
Aidan Power ◽  
Susan Abushakra

A large body of clinical and nonclinical evidence supports the role of neurotoxic soluble beta amyloid (amyloid, Aβ) oligomers as upstream pathogenic drivers of Alzheimer’s disease (AD). Recent late-stage trials in AD that have evaluated agents targeting distinct species of Aβ provide compelling evidence that inhibition of Aβ oligomer toxicity represents an effective approach to slow or stop disease progression: (1) only agents that target soluble Aβ oligomers show clinical efficacy in AD patients; (2) clearance of amyloid plaque does not correlate with clinical improvements; (3) agents that predominantly target amyloid monomers or plaque failed to show clinical effects; and (4) in positive trials, efficacy is greater in carriers of the ε4 allele of apolipoprotein E (APOE4), who are known to have higher brain concentrations of Aβ oligomers. These trials also show that inhibiting Aβ neurotoxicity leads to a reduction in tau pathology, suggesting a pathogenic sequence of events where amyloid toxicity drives an increase in tau formation and deposition. The late-stage agents with positive clinical or biomarker data include four antibodies that engage Aβ oligomers (aducanumab, lecanemab, gantenerumab, and donanemab) and ALZ-801, an oral agent that fully blocks the formation of Aβ oligomers at the clinical dose.


Sign in / Sign up

Export Citation Format

Share Document