scholarly journals Scale invariance of cell size fluctuations in starving bacteria

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Takuro Shimaya ◽  
Reiko Okura ◽  
Yuichi Wakamoto ◽  
Kazumasa A. Takeuchi

AbstractIn stable environments, cell size fluctuations are thought to be governed by simple physical principles, as suggested by recent findings of scaling properties. Here, by developing a microfluidic device and using E. coli, we investigate the response of cell size fluctuations against starvation. By abruptly switching to non-nutritious medium, we find that the cell size distribution changes but satisfies scale invariance: the rescaled distribution is kept unchanged and determined by the growth condition before starvation. These findings are underpinned by a model based on cell growth and cell cycle. Further, we numerically determine the range of validity of the scale invariance over various characteristic times of the starvation process, and find the violation of the scale invariance for slow starvation. Our results, combined with theoretical arguments, suggest the relevance of the multifork replication, which helps retaining information of cell cycle states and may thus result in the scale invariance.

2020 ◽  
Author(s):  
Takuro Shimaya ◽  
Reiko Okura ◽  
Yuichi Wakamoto ◽  
Kazumasa Takeuchi

Abstract In stable environments, cell size fluctuations are thought to be governed by simple physical principles, as suggested by recent findings of scaling properties. Here, by developing a novel microfluidic device and using E. coli, we investigate the response of cell size fluctuations against starvation. By abruptly switching to non-nutritious medium, we find that the cell size distribution changes but satisfies scale invariance: the rescaled distribution is kept unchanged and determined by the growth condition before starvation. These findings are underpinned by a model based on cell growth and cell cycle. Further, we numerically determine the range of validity of the scale invariance over various characteristic times of the starvation process. Combining theory and simulations, we reveal the number of multifork replications is crucial for the scale invariance. Our results emphasize the importance of intrinsic cellular cycle processes in this problem, suggesting different distribution trends for bacteria and eukaryotes.


Author(s):  
Takuro Shimaya ◽  
Reiko Okura ◽  
Yuichi Wakamoto ◽  
Kazumasa A. Takeuchi

AbstractIn stable environments, cell size fluctuations are thought to be governed by simple physical principles, as suggested by recent finding of scaling properties. Here we show, using E. coli, that the scaling concept also rules cell size fluctuations under time-dependent conditions, even though the distribution changes with time. We develop a microfluidic device for observing dense and large bacterial populations, under uniform and switchable conditions. Triggering bacterial reductive division by switching to non-nutritious medium, we find that the cell size distribution changes in a specific manner that keeps its normalized form unchanged; in other words, scale invariance holds. This finding is underpinned by simulations of a model based on cell growth and intracellular replication. We also formulate the problem theoretically and propose a sufficient condition for the scale invariance. Our results emphasize the importance of intrinsic cellular replication processes in this problem, suggesting different distribution trends for bacteria and eukaryotes.


Author(s):  
Zsuzsanna Márton ◽  
Bianka Csitári ◽  
Tamas Felfoldi ◽  
Anna J Szekely ◽  
Attila Szabo

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 713-723
Author(s):  
Wei Gong ◽  
Tuan-Hui Jiang ◽  
Xiang-Bu Zeng ◽  
Li He ◽  
Chun Zhang

AbstractThe effects of the cell size and distribution on the mechanical properties of polypropylene foam were simulated and analyzed by finite element modeling with ANSYS and supporting experiments. The results show that the reduced cell size and narrow size distribution have beneficial influences on both the tensile and impact strengths. Decreasing the cell size or narrowing the cell size distribution was more effective for increasing the impact strength than the tensile strength in the same case. The relationship between the mechanical properties and cell structure parameters has a good correlation with the theoretical model.


2018 ◽  
Author(s):  
Evgeny Zatulovskiy ◽  
Daniel F. Berenson ◽  
Benjamin R. Topacio ◽  
Jan M. Skotheim

Cell size is fundamental to function in different cell types across the human body because it sets the scale of organelle structures, biosynthesis, and surface transport1,2. Tiny erythrocytes squeeze through capillaries to transport oxygen, while the million-fold larger oocyte divides without growth to form the ~100 cell pre-implantation embryo. Despite the vast size range across cell types, cells of a given type are typically uniform in size likely because cells are able to accurately couple cell growth to division3–6. While some genes whose disruption in mammalian cells affects cell size have been identified, the molecular mechanisms through which cell growth drives cell division have remained elusive7–12. Here, we show that cell growth acts to dilute the cell cycle inhibitor Rb to drive cell cycle progression from G1 to S phase in human cells. In contrast, other G1/S regulators remained at nearly constant concentration. Rb is a stable protein that is synthesized during S and G2 phases in an amount that is independent of cell size. Equal partitioning to daughter cells of chromatin bound Rb then ensures that all cells at birth inherit a similar amount of Rb protein. RB overexpression increased cell size in tissue culture and a mouse cancer model, while RB deletion decreased cell size and removed the inverse correlation between cell size at birth and the duration of G1 phase. Thus, Rb-dilution by cell growth in G1 provides a long-sought cell autonomous molecular mechanism for cell size homeostasis.


2014 ◽  
Vol 13 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Anna Czerednik ◽  
Marco Busscher ◽  
Gerco C. Angenent ◽  
Ruud A. de Maagd

1973 ◽  
Vol 30 (2) ◽  
pp. 143-155 ◽  
Author(s):  
A. Prakash ◽  
Liv Skoglund ◽  
Britt Rystad ◽  
Arne Jensen

An extended exponential growth phase and a higher maximum population characterized growth of planktonic algae in a dialysis system compared with that in a batch system. Algal cells grown in a dialysis culture had higher chlorophyll content and a larger average cell size than those grown in a batch culture. In both types of culture, changes in cell-size distribution were related to the phases of the growth cycle with maximum cell-size during the stationary phase. Various interactions of the component reactions of photosynthesis leading to changes in growth pattern and cell-size distribution are discussed.


2014 ◽  
Vol 204 (3) ◽  
pp. 359-376 ◽  
Author(s):  
Jessica Zapata ◽  
Noah Dephoure ◽  
Tracy MacDonough ◽  
Yaxin Yu ◽  
Emily J. Parnell ◽  
...  

Cell size checkpoints ensure that passage through G1 and mitosis occurs only when sufficient growth has occurred. The mechanisms by which these checkpoints work are largely unknown. PP2A associated with the Rts1 regulatory subunit (PP2ARts1) is required for cell size control in budding yeast, but the relevant targets are unknown. In this paper, we used quantitative proteome-wide mass spectrometry to identify proteins controlled by PP2ARts1. This revealed that PP2ARts1 controls the two key checkpoint pathways thought to regulate the cell cycle in response to cell growth. To investigate the role of PP2ARts1 in these pathways, we focused on the Ace2 transcription factor, which is thought to delay cell cycle entry by repressing transcription of the G1 cyclin CLN3. Diverse experiments suggest that PP2ARts1 promotes cell cycle entry by inhibiting the repressor functions of Ace2. We hypothesize that control of Ace2 by PP2ARts1 plays a role in mechanisms that link G1 cyclin accumulation to cell growth.


Sign in / Sign up

Export Citation Format

Share Document