scholarly journals Immune Response in Mice Immunized with Chimeric H1 Antigens

Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1182
Author(s):  
Erasmus Nikoi Kotey ◽  
William Kwabena Ampofo ◽  
Rebecca Daines ◽  
Jean-Remy Sadeyen ◽  
Munir Iqbal ◽  
...  

Identification of a universal influenza vaccine candidate has remained a global challenge for both humans and animals. This study describes an approach that uses consensus sequence building to generate chimeric HAs (cHAs): two resultant H1 HA-based chimeras comprising of conserved sequences (within several areas spanning the head and stalk regions) of H1 and H5 or H9 HAs. These cHAs expressed in Drosophila cells (S2) were used to immunize mice. All immunized mice were protected from an infectious H1 virus challenge. Seroconverted mice sera to the H1 cHAs inhibited both the challenge virus and an H5 virus isolate by haemagglutination inhibition (HI) assay. These findings further emphasize that cHAs induce cross-reactive antibodies against conserved areas of both head and stalk regions of the seasonal influenza A (H1N1) pdm09 virus’ HA and holds potential for further development of a universal influenza vaccine.

2011 ◽  
Vol 92 (5) ◽  
pp. 1152-1161 ◽  
Author(s):  
Darren S. Miller ◽  
John Finnie ◽  
Timothy R. Bowden ◽  
Anita C. Scholz ◽  
Sawyin Oh ◽  
...  

A universal influenza vaccine that does not require annual reformulation would have clear advantages over the currently approved seasonal vaccine. In this study, we combined the mucosal adjuvant alpha-galactosylceramide (αGalCer) and peptides designed across the highly conserved influenza precursor haemagglutinin (HA0) cleavage loop as a vaccine. Peptides designed across the HA0 of influenza A/H3N2 viruses, delivered to mice via the intranasal route with αGalCer as an adjuvant, provided 100 % protection following H3N2 virus challenge. Similarly, intranasal inoculation of peptides across the HA0 of influenza A/H5N1 with αGalCer completely protected mice against heterotypic challenge with H3N2 virus. Our data suggest that these peptide vaccines effectively inhibited subsequent influenza A/H3N2 virus replication. In contrast, only 20 % of mice vaccinated with αGalCer-adjuvanted peptides spanning the HA0 of H5N1 survived homologous viral challenge, possibly because the HA0 of this virus subtype is cleaved by intracellular furin-like enzymes. Results of these studies demonstrated that HA0 peptides adjuvanted with αGalCer have the potential to form the basis of a synthetic, intranasal influenza vaccine.


Author(s):  
Ainara Mira-Iglesias ◽  
F. Xavier López-Labrador ◽  
Javier García-Rubio ◽  
Beatriz Mengual-Chuliá ◽  
Miguel Tortajada-Girbés ◽  
...  

Influenza vaccination is annually recommended for specific populations at risk, such as older adults. We estimated the 2018/2019 influenza vaccine effectiveness (IVE) overall, by influenza subtype, type of vaccine, and by time elapsed since vaccination among subjects 65 years old or over in a multicenter prospective study in the Valencia Hospital Surveillance Network for the Study of Influenza and other Respiratory Viruses (VAHNSI, Spain). Information about potential confounders was obtained from clinical registries and/or by interviewing patients and vaccination details were only ascertained by registries. A test-negative design was performed in order to estimate IVE. As a result, IVE was estimated at 46% (95% confidence interval (CI): (16%, 66%)), 41% (95% CI: (−34%, 74%)), and 45% (95% CI: (7%, 67%)) against overall influenza, A(H1N1)pdm09 and A(H3N2), respectively. An intra-seasonal not relevant waning effect was detected. The IVE for the adjuvanted vaccine in ≥75 years old was 45% (2%, 69%) and for the non-adjuvanted vaccine in 65–74 years old was 59% (−16%, 86%). Thus, our data revealed moderate vaccine effectiveness against influenza A(H3N2) and not significant against A(H1N1)pdm09. Significant protection was conferred by the adjuvanted vaccine to patients ≥75 years old. Moreover, an intra-seasonal not relevant waning effect was detected, and a not significant IVE decreasing trend was observed over time.


1983 ◽  
Vol 91 (1) ◽  
pp. 131-138 ◽  
Author(s):  
A. N. Naikhin ◽  
I. M. Tsaritsina ◽  
E. V. Oleinikova ◽  
L. G. Syrodoeva ◽  
N. L. Korchanova ◽  
...  

SUMMARYEight hundred and seventy-seven sera from 360 adults aged 18–50 who were under permanent observation from October 1980 to March 1981 have been studied by haemagglutination-inhibition (HI) and erythrocyte elution-inhibition (EI) tests – a simplified method of antineuraminidase antibody titration. It was demonstrated in some subjects infected with influenza A H1N1 and H3N2 viruses that the antibody rise was to one of the surface antigens only – haemagglutinin or neuraminidase. These subjects made up 5·2–25·8% of all examinees. The protective effect of antibodies to neuraminidase was similar to that of antihaemagglutinins. Interaction of both types of antibodies was observed in protection against the disease. Data have been obtained on the influence of antineuraminidase antibodies in decreasing the severity of natural infection with influenza A.A study of heterologous immunologic responses to haemagglutinin and neuraminidase among persons immunized with live influenza A H1N1 and H3N2 vaccines and among children naturally infected with influenza A H3N2 demonstrated the presence of immunologic memory for antineuraminidase antibody synthesis. Thus, the suggestion of a common antigenic structure for neuraminidase Nl and N2 is made.


Author(s):  
Diqi Yang ◽  
Minghua Hu ◽  
Hongmei Zhu ◽  
Jianguo Chen ◽  
Dehai Wang ◽  
...  

Abstract The pandemic influenza A (H1N1) virus spread globally and posed one of the most serious global public health challenges. The traditional Chinese medicine is served as a complementary treatment strategy with vaccine immunization. Here, we demonstrated the mixed polysaccharides (MPs) derived from shiitake mushroom, poriacocos, ginger and tyangerine peel prevent the H1N1 virus infections in mice. MPs pretreatment attenuated H1N1 virus-induced weight loss, clinical symptoms and death. The lymphocytes detection results showed the CD3+, CD19+ and CD25+ cell proportions were up-regulated in thymus under MPs pretreatment. Besides, MPs pretreatment reduced the inflammatory cell infiltration and increased the cell proportions of CD19+, CD25+ and CD278+ in lung. However, MPs treatment have no effective therapeutic effect after H1N1 virus challenge. The current study suggested that pretreatment with MPs could attenuate H1N1 virus-induced lung injury and up-regulate humoral and cellular immune responses in non- immunized mice.


2016 ◽  
Vol 21 (38) ◽  
Author(s):  
Richard Pebody ◽  
Fiona Warburton ◽  
Joanna Ellis ◽  
Nick Andrews ◽  
Alison Potts ◽  
...  

The United Kingdom (UK) is in the third season of introducing universal paediatric influenza vaccination with a quadrivalent live attenuated influenza vaccine (LAIV). The 2015/16 season in the UK was initially dominated by influenza A(H1N1)pdm09 and then influenza of B/Victoria lineage, not contained in that season’s adult trivalent inactivated influenza vaccine (IIV). Overall adjusted end-of-season vaccine effectiveness (VE) was 52.4% (95% confidence interval (CI): 41.0–61.6) against influenza-confirmed primary care consultation, 54.5% (95% CI: 41.6–64.5) against influenza A(H1N1)pdm09 and 54.2% (95% CI: 33.1–68.6) against influenza B. In 2–17 year-olds, adjusted VE for LAIV was 57.6% (95% CI: 25.1 to 76.0) against any influenza, 81.4% (95% CI: 39.6–94.3) against influenza B and 41.5% (95% CI: −8.5 to 68.5) against influenza A(H1N1)pdm09. These estimates demonstrate moderate to good levels of protection, particularly against influenza B in children, but relatively less against influenza A(H1N1)pdm09. Despite lineage mismatch in the trivalent IIV, adults younger than 65 years were still protected against influenza B. These results provide reassurance for the UK to continue its influenza immunisation programme planned for 2016/17.


2021 ◽  
Author(s):  
Ryan E. Malosh ◽  
Joshua G. Petrie ◽  
Amy Callear ◽  
Rachel Truscon ◽  
Emileigh Johnson ◽  
...  

AbstractBackgroundThe evidence that influenza vaccination programs regularly provide protection to unvaccinated individuals (i.e. indirect effects) of a community is lacking. We sought to determine the direct, indirect, and total effects of influenza vaccine in the Household Influenza Vaccine Evaluation (HIVE) cohort.MethodsUsing longitudinal data from the HIVE cohort from 2010-11 through 2017-18, we estimated direct, indirect, and total influenza vaccine effectiveness (VE) and the incidence rate ratio of influenza virus infection using adjusted mixed-effect Poisson regression models. Total effectiveness was determined through comparison of vaccinated members of full or partially vaccinated households to unvaccinated individuals in completely unvaccinated households.ResultsThe pooled, direct VE against any influenza was 30.2% (14.0-43.4). Direct VE was higher for influenza A/H1N1 43.9% (3.9 to 63.5) and B 46.7% (17.2 to 57.5) than A/H3N2 31.7% (10.5 to 47.8); and was higher for young children 42.4% (10.1 to 63.0) than adults 18.6% (−6.3 to 37.7). Influenza incidence was highest in completely unvaccinated households (10.6 per 100 person-seasons) and lower at all other levels of household vaccine coverage. We found little evidence of indirect VE after adjusting for potential confounders. Total VET was 56.4% (30.1-72.9) in low coverage, 43.2% (19.5-59.9) in moderate coverage, and 33.0% (12.1 to 49.0) in fully vaccinated households.ConclusionInfluenza vaccines may have a benefit above and beyond the direct effect but that effect in this study was small. While there may be exceptions, the goal of global vaccine recommendations should remain focused on provision of documented, direct protection to those vaccinated.


2011 ◽  
Vol 16 (17) ◽  
Author(s):  
C Brandt ◽  
H F Rabenau ◽  
S Bornmann ◽  
R Gottschalk ◽  
S Wicker

The emergence of the influenza A(H1N1)2009 virus provided a major challenge to health services around the world. However, vaccination rates for the public and for healthcare workers (HCWs) have remained low. We performed a study to review the reasons put forward by HCWs to refuse immunisation with the pandemic vaccine in 2009/10 and characterise attitudes in the influenza season 2010/11 due to the emergence of influenza A(H1N1)2009. A survey among HCWs and medical students in the clinical phase of their studies was conducted, using an anonymous questionnaire, at a German university hospital during an influenza vaccination campaign. 1,366 of 3,900 HCWs (35.0%) were vaccinated in the 2010/11 influenza season. Of the vaccinated HCWs, 1,323 (96.9%) completed the questionnaire in addition to 322 vaccinated medical students. Of the 1,645 vaccinees who completed the questionnaire, 712 had not been vaccinated against the influenza A(H1N1)2009 virus in the 2009/10 season. The main reason put forward was the objection to the AS03 adjuvants (239/712, 33.6%). Of the HCWs and students surveyed, 270 of 1,645 (16.4%) stated that the pandemic had influenced their attitude towards vaccination in general. Many German HCWs remained unconvinced of the safety of the pandemic (adjuvanted) influenza vaccine. For this reason, effective risk communication should focus on educating the public and HCWs about influenza vaccine safety and the benefits of vaccination.


Author(s):  
Gee Yen Shin

The vaccines included in the current UK Immunisation Schedule offer protection against the following pathogens: A. Viruses ● Measles ● Mumps ● Rubella ● Polio ● Human Papilloma Virus (certain serotypes) ● Rotavirus ● Influenza virus (flu A and B) ● Varicella zoster virus (shingles) ● Hepatitis B virus B. Bacteria ● Corynebacterium diphtheriae (Diphtheria) ● Clostridium tetani (Tetanus) ● Bordetella pertussis (Pertussis) ● Haemophilus influenzae type B (Hib) ● Neisseria meningitidis (Meningococcal disease—certain serotypes) ● Streptococcus pneumoniae (Pneumococcal disease—certain serotypes) The UK Immunisation Schedule has evolved over several decades and reflects changes in vaccine development and commercial availability, national and sometimes international disease epidemiology, and the latest expert opinion. It is designed to offer optimal protection against infectious diseases of childhood to infants and children at the most appropriate age. The most up-to-date information about the UK Immunisation Schedule is available on the online version of the Department of Health publication commonly known as the ‘Green Book’: Immunisation Against Infectious Disease Handbook (see Further reading. Various chapters of the online version are updated at regular intervals; thus, it is very important to refer to the online version of the Green Book on the website for current guidance. Changes to the UK Immunisation Schedule are made on the recommendation of the independent Joint Committee on Vaccines and Immunisation (JCVI). Several of the UK Immunisation Schedule vaccines are combined vaccines: ● Measles, mumps, and rubella (MMR). ● Hexavalent diphtheria, tetanus, acellular pertussis, inactivated polio virus, Haemophilus influenza type b, hepatitis B (DTaP/IPV/Hib/HepB). ● Diphtheria, tetanus, acellular pertussis, inactivated polio, and Haemophilus influenzae (DTaP/IPV/Hib). ● Diphtheria, tetanus, acellular pertussis, inactivated polio (DTaP/IPV). ● Tetanus, diphtheria, and inactivated polio (Td/IPV). ● Inactivated influenza vaccine: influenza A H1N1, H3N2, influenza B. ● Live attenuated intranasal influenza vaccine: influenza A H1N1, H3N2, influenza B. In the UK, vaccines against single pathogens covered by the MMR vaccine are not recommended and not available in the National Health Service (NHS). There has been some limited demand for single-target vaccines, e.g. measles, due to misguided and unfounded concerns about the alleged risks of autism following MMR.


2012 ◽  
Vol 19 (10) ◽  
pp. 1690-1692 ◽  
Author(s):  
Hidetoshi Igari ◽  
Akira Watanabe ◽  
Shunsuke Segawa ◽  
Akiko Suzuki ◽  
Mariko Watanabe ◽  
...  

ABSTRACTThe immunogenicity of pandemic influenza A H1N1 virus (A/H1pdm) vaccine might be modified by prior seasonal trivalent influenza vaccine (sTIV) administration. We conducted a retrospective analysis of immunogenicity of 243 health care workers (number of sTIV-positive [sTIV+] subjects, 216; number of sTIV−subjects, 27) by hemagglutination inhibition. There was no significant difference in the ratios of antibody titers of ≥40 (41.2% versus 48.1%;P= 0.49) and fold increases in geometric mean titer (3.8 versus 4.5;P= 0.37). sTIV injected 7 to 10 days prior to A/H1pdm vaccine administration did not interfere with the immunogenicity of the latter.


Sign in / Sign up

Export Citation Format

Share Document