scholarly journals Pengaruh Kecepatan Fluida Pendingin (Udara) Terhadap Unjuk Kerja Dan Karakteristik Perpindahan Panas Pada Radiator Sepeda Motor Yamaha Nmax 155CC

2021 ◽  
Vol 14 (2) ◽  
pp. 106-111
Author(s):  
Ridho Syahrul ◽  
Amnur Akhyan

Penelitian ini menggunakan metode ɛ-NTU untuk menganalisis data. Radiator yang digunakan adalah radiator sepeda motor Yamaha Nmax 155cc dengan jenis aliran vertical, flat tube dan louvered fins, kipas/fan sebagai sumber angin simulasi, dengan campuran 50% air + 50% coolant radiator. Laju aliran air konstan 4 lpm dan temperatur fluida panas konstan 80. Variasi kecepatan aliran udara yang digunakan pada pengujian kali ini adalah 4-8 m/s dan diatur menggunakan Dimmer sebagai alat bantu. Dari pengujian yang telah dilakukan didapat laju massa aliran udara yang paling besar terjadi pada kecepatan kipas 8 m/s. Laju perpindahan panas yang paling besar terjadi dikecepatan kipas 8 m/s sebesar 0,0735 kW dan panas menyeluruh terbesar juga terjadi dikecepatan kipas 8 m/s yaitu sebesar 9,50 W/m2°C. Efisiensi radiator maksimum terjadi pada kecepatan kipas 5 m/s dengan nilai sebesar 7,59. Kata kunci: Efektifitas, Metode ε-NTU, Radiator Nmax 155cc. This study uses the ε-NTU method to analyze the data. The radiator used is a 155cc Yamaha Nmax motorcycle radiator with vertical flow type, flat tube and louvered fins, fan/fan as a simulation source, with a mixture of 50% water + 50% coolant radiator. The water flow rate is constant 4 lpm and the hot fluid temperature is constant 80℃. The variation of air flow velocity used in this test is 4-8 m/s and is adjusted using a dimmer as a tool. From the tests that have been carried out, the largest air flow rate occurs at a fan speed of 8 m/s. The highest heat transfer rate occurs at a fan speed of 8 m/s at 0.0735 kW and the largest overall heat also occurs at a fan speed of 8 m/s at 9.50 W/m2°C. The maximum radiator efficiency occurs at a fan speed of 5 m/s with a value of 7.59 Keywords: Effectivenes, ɛ-NTU Method, Nmax 155cc Radiator

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 167
Author(s):  
Hasan Alimoradi ◽  
Madjid Soltani ◽  
Pooriya Shahali ◽  
Farshad Moradi Kashkooli ◽  
Razieh Larizadeh ◽  
...  

In this study, a numerical and empirical scheme for increasing cooling tower performance is developed by combining the particle swarm optimization (PSO) algorithm with a neural network and considering the packing’s compaction as an effective factor for higher accuracies. An experimental setup is used to analyze the effects of packing compaction on the performance. The neural network is optimized by the PSO algorithm in order to predict the precise temperature difference, efficiency, and outlet temperature, which are functions of air flow rate, water flow rate, inlet water temperature, inlet air temperature, inlet air relative humidity, and packing compaction. The effects of water flow rate, air flow rate, inlet water temperature, and packing compaction on the performance are examined. A new empirical model for the cooling tower performance and efficiency is also developed. Finally, the optimized performance conditions of the cooling tower are obtained by the presented correlations. The results reveal that cooling tower efficiency is increased by increasing the air flow rate, water flow rate, and packing compaction.


2018 ◽  
Vol 180 ◽  
pp. 02082 ◽  
Author(s):  
Kazimierz Peszynski ◽  
Jan Novosád ◽  
Emil Smyk ◽  
Lukasz Olszewski ◽  
Petra Dančová

Paper presents new mathematical model for air flow velocity distribution in rounded rectangular ducts and its experimental verification. In papers [1, 2] an mathematical model based on modified Prandtl equation for power power-law velocity profile was determined. It works very well for smaller cross sections. During the study of larger cross sections new phenomena in flowing air have been observed, it forced the search for a new model. The new model is based on a rounded rectangular division into two parts: slot and rounded square.


1999 ◽  
Author(s):  
Sachiyo Horiki ◽  
Masahiro Osakabe

Abstract Flow header for small multiple pipes is commonly used in boilers and heat exchangers. The system contributes to raise the heat transfer efficiency in the components. The flow distribution mechanism of the header for water has been studied and the calculation procedure for the design has been recommended for a single-phase condition. It is also recommended to avoid the bubbles in the header to obtain a uniform water flow rate to each small pipe. But in some cases, the header has to be used to distribute a flow containing bubbles. Distribution behavior of water with a gas-phase was studied experimentally in a horizontal header with four vertical pipes. In the present experimental header, it was possible to protrude the branch pipes inside of the header and the effect of protruding length on the water distribution behavior was studied. When the protruding length was 0, the water distribution rate to the first pipe rapidly increased and the rates to the others decreased with a small amount of bubbles. As the bubbles in the header were absorbed only into the first pipe, the average two-phase density in the first pipe decreased. The decreased pressure head promotes the rush of water into the first pipe such as in an airlift pump. By increasing the air flow rate in the header inlet further, the flow rate to the first pipe took a maximum and then tended to decrease. The increased air flow rate in the first pipe increased the pressure loss in the pipe and resulted in a reduction in the water flow rate. The more important and serious behavior could be seen in the other pipes where the water flow rate decreased to 1/5 of the uniform distribution rate. By increasing the protruding length, the non-uniform distribution of water was suppressed because the gas-phase entered not only the first pipe but also the others. The best result was obtained when the four branch pipes were protruded into the center of header.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Vaibhav K. Arghode ◽  
Yogendra Joshi

Presently, air cooling is the most common method of thermal management in data centers. In a data center, multiple servers are housed in a rack, and the racks are arranged in rows to allow cold air entry from the front (cold aisle) and hot air exit from the back (hot aisle), in what is referred as hot-aisle-cold-aisle (HACA) arrangement. If the racks are kept in an open room space, the differential pressure between the front and back of the rack is zero. However, this may not be true for some scenarios, such as, in the case of cold aisle containment, where the cold aisle is physically separated from the hot data center room space to minimize cold and hot air mixing. For an under-provisioned case (total supplied tile air flow rate < total rack air flow rate) the pressure in the cold aisle (front of the rack) will be lower than the data center room space (back of the rack). For this case, the rack air flow rate will be lower than the case without the containment. In this paper, we will present a methodology to measure the rack air flow rate sensitivity to differential pressure across the rack. Here, we use perforated covers at the back of the racks, which results in higher back pressure (and lower rack air flow rate) and the corresponding sensitivity of rack air flow rate to the differential pressure is obtained. The influence of variation and nonuniformity in the server fan speed is investigated, and it is observed that with consideration of fan laws, one can obtain results for different average fan speeds with reasonable accuracy. The measured sensitivity can be used to determine the rack air flow rate with variation in the cold aisle pressure, which can then be used as a boundary condition in computational fluid dynamics (CFD)/rapid models for data center air flow modeling. The measured sensitivity can also be used to determine the change in rack air flow rate with the use of different types of front/back perforated doors at the rack. Here, the rack air flow rate is measured using an array of thermal anemometers, pressure is measured using a micromanometer, and the fan speed is measured using an optical tachometer.


Author(s):  
Akinori Furukawa ◽  
Satoshi Ohshita ◽  
Kusuo Okuma ◽  
Satoshi Watanabe

A centrifugal impeller, the pumping action of which could be highly kept even at an air-water two-phase flow condition of inlet void fraction more than 30% in the region of relatively high water flow rate, has been developed. In the present paper, the design concept of two-phase flow impeller is described, at first, with experimental results. The short bladed forward impeller with high outlet blade angle was decided to keep theoretical head higher even in two-phase flow condition and to disperse the air accumulating region on the suction blade surface by the water jet flow coming from the pressure side. Furthermore, the tandem arrangement of outer and inner rotating cascades with the same blade numbers was adopted to suppress the rotating stall phenomena appearing in the case of a single stage of outer cascade. It should be noted that these results were obtained with operating a boost pump installed upstream of mixing section of air and water, that is not an actual operation of two-phase flow pump. Secondly, the operating characteristics of this two-phase flow pump with change of air flow rate were investigated experimentally without operating the boost pump. As the trajectory of operating point with increasing air flow rate appears along the resistance curve of piping system, the impossibility of pumping occurs at lower air flow rate even though pump head takes a positive value at high air flow rate with increasing water flow rate. It is recognized that it is necessary to improve two-phase flow head characteristic curves in the region of low water flow rate to operate in wider two-phase flow conditions.


Author(s):  
Tomoyasu Tanaki ◽  
Ken Nemoto ◽  
Hiroyasu Ohtake ◽  
Yasuo Koizumi

The heat transfer in mist cooling for low droplet density, focusing on the heat transfer characteristics, behaviors of liquid on a heating surface and measurements of liquid droplets by LDA was investigated experimentally. Steady heat transfer experiments of a copper block were conducted for mist flow of air and water in a range of air flow rate from 40 to 120 1N/min. Water flow rate was 0.3, 0.9, 1.8, 4.0 and 8.0 1/hr, respectively. Mist flow of water and air forming in a fully conical nozzle with a mixture camber was supplied on the heating surface arranged for horizontal-upward position. The critical heat flux increased with an increasing liquid flow rate. The critical heat flux decreased as the air flow rate increased. Three correlations of the mist cooling rate for non-boiling, evaporation of droplets and evaporation of the liquid film were developed with microscopic parameters of two-phase flow, respectively.


2019 ◽  
Vol 41 (4) ◽  
pp. 507-516
Author(s):  
Fa-Li Ju ◽  
Liying Liu ◽  
Xiaoping Yu

Based on air flow rate testing of each branch fan in a distributed fan ventilation system under different branch air duct inlet static pressures, the conclusion can be drawn that there is a branch fan air flow rate deviation phenomenon. The air flow rate of the branch fan increases with the branch air duct inlet static pressure at the same branch fan speed, and the branch fan hinders the air flow rate in some cases. In this study, a theoretical expression of the deviation of the branch air duct design air flow rate was established, and the influencing factors of the deviation were determined to include the branch air duct resistance characteristics, branch fan performance, and branch air duct inlet pressure ratio. A graphic analytical method for determining the deviation of the branch fan design air flow rate was also proposed. Both methods can provide a theoretical basis for calculating and analysing the deviation of the branch fan design air flow rate in a distributed fan ventilation system. Practical application: This paper provides new data on the performance of a distributed fan ventilation system. Our results could be used to evaluate the impact of distributed zone fans on the air flow rate in a mechanical ventilation system. Crucially, we not only propose two types of methods that can be applied to predict deviations of the air flow rate in a distributed fan ventilation system caused by the branch air duct inlet static pressures but also obtain the factors that are important for understanding the true impact of the deviation of the branch fan air flow rate. This study lays an important foundation for the design and operation of building mechanical ventilation systems.


2021 ◽  
Vol 35 (4) ◽  
pp. 24-32
Author(s):  
Jae Geun Jo ◽  
Chi Young Lee

In this study, the thermal radiation attenuation performance of water mist was investigated using twin-fluid atomizers. The water and air flow rates of Small atomizer were 36~105 g/min and 10~30 L/min, whereas those of Large atomizer were 37~300 g/min and 20~60 L/min, respectively. In the present experimental range, the thermal radiation attenuation of Small atomizer and Large atomizer were 6.1~11.9% and 5.2~14.6%, respectively. With the increase in water and air flow rates, the thermal radiation attenuation increased, and under similar water and air flow rate conditions, Small atomizer showed higher thermal radiation attenuation than Large atomizer. Based on the present experimental data, it was found that the air (gas) discharge area is a potentially important factor in determining the thermal radiation attenuation performance. Additionally, through the analysis of thermal radiation attenuation per unit water flow rate, it was confirmed that the twin-fluid atomizer can result in higher thermal radiation attenuation than the single-fluid atomizer under the same water flow rate condition.


2021 ◽  
Vol 37 (1) ◽  
pp. 105-112
Author(s):  
Komgrit Leksakul ◽  
Norrapon Vichiansan ◽  
Pisit Kaewkham ◽  
Boonprathan Hattaphasu ◽  
Dheerawan Boonyawan

HighlightsAbstract. In this study, we developed an effective methodology to determine the suitable plasma-based generating system of reactive nitrogen species (RNS) targeting hydroponic farming systems using a full factorial design with center points and blocking. A 2k with 2 blockings plus 2 center points design was employed in the experiment to develop an efficient analytical model for nitrogen solution concentration and hydroponic vegetable growth incorporating the plasma discharge system process parameters, including water flow rate, plasma discharge duration, and air flow rate. This study designed and constructed an air plasma discharge system with DC power supply. Thereafter, nitrogen solution was generated under a parameter conditions setting by the design of experiments (DOE) method. RNS solution, which contained nitrate (NO3-) and nitrite (NO2-) ions with P and K added, was passed through the hydroponic system for growing green oak lettuce. The most promising plasma-generated nitrogen solution parameters were obtained for this set up at a water flow rate of 6 L/min, discharge duration of 60 min, and activated air flow rate of 60 mL/min. Keywords: Nitrate, Nitrite, Plasma discharge, Reactive nitrogen species.


Author(s):  
Feras Z. Batarseh ◽  
Ilia V. Roisman ◽  
Cam Tropea

We present an experimental investigation of a spray generated by an airblast atomizer. Experiments have been performed in a pressure chamber equipped by transparent windows allowing an optical access to the spray. Several techniques of spray investigation have been applied: spray visualization using the high-speed video system, spray visualization and instantaneous velocity measurements using the PIV technique, spray velocimetry and sizing using the IPI and phase Doppler instruments. Phase Doppler instrument has been used to characterize the droplets in the spray: their diameter, two components of the velocity vector. Also the integral parameters of the spray, such as the local volume flux density, have been characterized. We conduct a parametric study of the effect of the ambient pressure, the air flow rate and the water flow rate on an atomized spray. Measurements at different radial locations in the spray and in two planes were performed. The measurements in these two planes allow one to determine the distributions of all the three components of the average drop velocity vector: axial, radial and azimuthal. PDA measurements show that atomized spray is sensitive to any change in the studied parameters. For example, increasing air flow rate from 20 SCMH to 45 SCMH and keeping same water flow rate and pressure, leads to an increase in all velocity components and also to a change in droplets diameters. On the other hand, keeping constant pressure and air flow rate and increasing water flow rate from 0.7 to 1.4 l/hr, leads to an increase in water droplets sizes and the axial velocity component, whereas the other velocity components show a non uniform change. Moreover, increasing the ambient pressure leads to the growth of the spray velocity and drops diameters.


Sign in / Sign up

Export Citation Format

Share Document