High-performance magnetostrictive composites with large particles volume fraction

2019 ◽  
Vol 805 ◽  
pp. 1266-1270 ◽  
Author(s):  
Bochen Li ◽  
Tianli Zhang ◽  
Yuye Wu ◽  
Chengbao Jiang
Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Author(s):  
zhikun zhang ◽  
lianlian xia ◽  
Lizhao Liu ◽  
Yuwen Chen ◽  
zuozhi wang ◽  
...  

Large surface roughness, especially caused by the large particles generated during both the transfer and the doping processes of graphene grown by chemical vapor deposition (CVD) is always a critical...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Wook Kim ◽  
Seong-Hoon Kang ◽  
Se-Jong Kim ◽  
Seungchul Lee

AbstractAdvanced high strength steel (AHSS) is a steel of multi-phase microstructure that is processed under several conditions to meet the current high-performance requirements from the industry. Deep neural network (DNN) has emerged as a promising tool in materials science for the task of estimating the phase volume fraction of these steels. Despite its advantages, one of its major drawbacks is its requirement of a sufficient amount of training data with correct labels to the network. This often comes as a challenge in many areas where obtaining data and labeling it is extremely labor-intensive. To overcome this challenge, an unsupervised way of learning DNN, which does not require any manual labeling, is proposed. Information maximizing generative adversarial network (InfoGAN) is used to learn the underlying probability distribution of each phase and generate realistic sample points with class labels. Then, the generated data is used for training an MLP classifier, which in turn predicts the labels for the original dataset. The result shows a mean relative error of 4.53% at most, while it can be as low as 0.73%, which implies the estimated phase fraction closely matches the true phase fraction. This presents the high feasibility of using the proposed methodology for fast and precise estimation of phase volume fraction in both industry and academia.


2007 ◽  
Vol 280-283 ◽  
pp. 887-890
Author(s):  
Zhong Min Zhao ◽  
Long Zhang ◽  
Jian Jiang Wang ◽  
Shi Yan ◽  
Jin Rong Cao

The design on joining of metal and ceramics in composite pipes fabricated by the SHS metallurgical process is carried on with adding (TiO2 +Al+C+Ni) subsystem in(CrO3+Al) system, and the composite pipes with three-layer structure of steel substrate, intermediate alloy and lined ceramics are fabricated with low cost and high performance. Combustion determination and mechanical test indicate that adding suitable amount of Ni powder in combustion system rather than (NiO+Al) subsystem can cause combustion behavior of a whole system and volume fraction of the carbides to be controlled easily, and is beneficial to improve joining of the intermediate alloy and steel substrate, causing compression strength and compression shear strength of the composite pipes to be increased greatly.


2017 ◽  
Vol 52 (11) ◽  
pp. 1443-1455
Author(s):  
Mike Mühlstädt ◽  
Wolfgang Seifert ◽  
Matthias ML Arras ◽  
Stefan Maenz ◽  
Klaus D Jandt ◽  
...  

Three-dimensional stiffness tensors of laminated woven fabrics used in high-performance composites need precise prediction. To enhance the accuracy in three-dimensional stiffness tensor prediction, the fabric’s architecture must be precisely modeled. We tested the hypotheses that: (i) an advanced geometrical model describes the meso-level structure of different fabrics with a precision higher than established models, (ii) the deviation between predicted and experimentally determined mean fiber-volume fraction ( cf) of laminates is below 5%. Laminates of different cf and fabrics were manufactured by resin transfer molding. The laminates’ meso-level structure was determined by analyzing scanning electron microscopy images. The prediction of the laminates’ cf was improved by up to 5.1 vol% ([Formula: see text]%) compared to established models. The effect of the advanced geometrical model on the prediction of the laminate’s in-plane stiffness was shown by applying a simple mechanical model. Applying an advanced geometrical model may lead to more accurate simulations of parts for example in automotive and aircraft.


2019 ◽  
Vol 56 (9) ◽  
pp. 1215-1224 ◽  
Author(s):  
C.W.W. Ng ◽  
C.E. Choi ◽  
D.K.H. Cheung ◽  
Y. Cui

Bi-dispersity is a prerequisite for grain-size segregation, which transports the largest particles to the flow front. These large and inertial particles can fragment upon impacting a barrier. The amount of fragmentation during impact strongly influences the force exerted on a rigid barrier. Centrifuge modelling was adopted to replicate the stresses for studying the effects of bi-dispersity in a granular assembly and dynamic fragmentation on the impact force exerted on a model rigid barrier. To study the effects of bi-dispersity, the ratio between the diameters of small and large particles (δs/δl), characterizing the particle-size distribution (PSD), was varied as 0.08, 0.26, and 0.56. The volume fraction of the large particles was kept constant. A δs/δl tending towards unity characterizes inertial flow that exerts sharp impulses, and a diminishing δs/δl characterizes the progressive attenuation of these sharp impulses by the small particles. Flows dominated by grain-contact stresses (δs/δl < 0.26), as characterized by the Savage number, are effective at attenuating dispersive stresses of the large particles, which are responsible for reducing dynamic fragmentation. By contrast, flows dominated by grain-inertial stresses (δs/δl > 0.26) exhibit up to 66% more impulses and 4.3 times more fragmentation. Dynamic fragmentation of bi-disperse flows impacting a rigid barrier can dissipate about 30% of the total flow energy.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 11 ◽  
Author(s):  
Kaizhi Liu ◽  
Rui Yu ◽  
Zhonghe Shui ◽  
Xiaosheng Li ◽  
Xuan Ling ◽  
...  

In this paper, two kinds of pumice particles with different diameters and water absorption rates are employed to substitute the corresponding size of river sands by volume fraction, and their effects on the hydration characteristics and persistent shrinkage of Ultra-High Performance Concrete (UHPC) are investigated. The obtained experimental results show that adopting a low dosage of 0.6–1.25 mm saturated pumice as the internal curing agent in UHPC can effectively retract the persistent shrinkage deformation of concrete without a decrease of strength. Heat flow calorimetry results demonstrate that the additional water has a retarding effect and promotes the hydration process. X-ray Diffraction (XRD) and Differential Thermal Gravimetry (DTG) are utilized to quantify the Ca(OH)2 content in the hardened paste, which can confirm that the external moisture could accelerate the early cement hydration and secondary hydration of active mineral admixtures. The Ca/Si ratio of C–S–H calculated by the Energy Dispersive Spectrometer (EDS) reveals that the incorporation of wet pumice can transform the composition and structure of hydration products in its effective area.


Author(s):  
Bhaskar Ale ◽  
Carl-Ernst Rousseau

Hollow particulate composites are lightweight, have high compressive strength, are low moisture absorbent, have high damping materials, and are used extensively in aerospace, marine applications, and in the manufacture of sandwich composites core elements. The high performance of these materials is achieved by adding high strength hollow glass particulates (microballoons) to an epoxy matrix, forming epoxy-syntactic foams. The present study focuses on the effect of volume fraction and microballoon size on the ultrasonic and dynamic properties of Epoxy Syntactic Foams. Ultrasonic attenuation coefficient from an experiment is compared with a previously developed theoretical model for low volume fractions that takes into account attenuation loss due to scattering and absorption. The guidelines of ASTM Standard E 664-93 are used to compute the apparent attenuation. Quasi-static compressive tests were also conducted to fully characterize the material. Both quasi-static and dynamic properties, as well as coefficients of attenuation and ultrasonic velocities are found to be strongly dependent upon the volume fraction and size of the microballoons.


2001 ◽  
Author(s):  
Jay R. Sayre ◽  
Alfred C. Loos

Abstract Vacuum assisted resin transfer molding (VARTM) has shown potential to significantly reduce the manufacturing cost of high-performance aerospace composite structures. In this investigation, high fiber volume fraction, triaxially braided preforms with through-the-thickness stitching were successfully resin infiltrated by the VARTM process. The preforms, resin infiltrated with three different resin systems, produced cured composites that were fully wet-out and void free. A three-dimensional finite element model was used to simulation resin infusion into the preforms. The predicted flow patterns agreed well with the flow pattern observed during the infiltration process. The total infiltration times calculated using the model compared well with the measured times.


Sign in / Sign up

Export Citation Format

Share Document