ultrasonic agitation
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 21)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 15 (4) ◽  
pp. 256-261
Author(s):  
Gamze Nalci ◽  
Tayfun Alaçam ◽  
Bülent Altukaynak

Background. This study aimed to assess the effects of methyl ethyl ketone (MEK) and ethyl acetate (EA) on dentin microhardness, used as resin sealer solvents. Methods. Eighty halves of single-rooted teeth were randomly divided into four groups to apply MEK, EA, chloroform, or saline solution. Vickers hardness values were measured for three root levels before and after the direct application of solvents for 5 and 15 minutes or a 1-minute application with ultrasonic agitation. The results were analyzed using repeated-measures ANOVA, and adjustments were made for comparisons with Bonferroni tests. Results. The dentin microhardness decreased in all the solvent groups (P<0.05). The changes in microhardness increased with prolonged exposure times, except for the saline solution group. Chloroform exhibited the most significant decrease in value. Furthermore, ultrasonic agitation elicited a more substantial decline in values. Conclusion. MEK and EA might be preferred over chloroform as a solvent for resin sealers because they offer an attenuated decrease in dentin microhardness and do not have gutta-percha-dissolving properties.


Author(s):  
Flaviana Bombarda de Andrade ◽  
Layla Reginna da Silva Munhoz Vasconcelos ◽  
Thais Cristina Pereira ◽  
Roberto Brandão Garcia ◽  
Clóvis Monteiro Bramante ◽  
...  

AbstractObjectives: The objective of the present work was to evaluate the ultrasonic agitation, time and vehicle (propylene glycol or distilled water) on the antimicrobial potential and penetrability of calcium hydroxide pastes on infected dentin by means of Confocal Laser Scanning Microscopy (CLSM) and microbiological culture (MC). Materials and methods: Dentin specimens were infected with Enterococcus faecalis using a new contamination protocol of 5 days. The specimens were divided into eight groups and dressed with the pastes for 7 or 15 days: G1) calcium hydroxide (CH) + propylene glycol (prop)/7 days (d), G2) CH + prop/7d + ultrasonic agitation (U), G3) CH + distilled water (dw)/7d, G4) CH + dw/7d + U, G5) CH + prop/15d, G6) CH + prop/15d + U, G7) CH + dw/15d, G8) CH + dw/15d + U. The ultrasonic activation was made for 1 min in both directions with a plain point insert. After medications removal, the images obtained by CLSM showed the viable (green) and dead (red) bacteria with Live and Dead dye. By the MC, the dentinal wall debris obtained by burs were collected for colony counts. For the penetration test, the Rodamine B dye was added to the CH pastes and analyzed by CLSM. Results: The 7 and 15-days CH + prop+U pastes performed better antimicrobial efficacy, followed by the CH + dw+U/15d paste. Conclusions: All pastes demonstrated better penetration and antimicrobial activity against E. faecalis when agitated with ultrasound, even in periods of up to seven days. The propylene glycol vehicle showed better results. Clinical relevance: Agitation of the dressing that remains for less time inside the root canal can optimize the decontamination of endodontic treatment.


2021 ◽  
Vol 10 (21) ◽  
pp. 4977
Author(s):  
Saulius Drukteinis ◽  
Goda Bilvinaite ◽  
Hagay Shemesh ◽  
Paulius Tusas ◽  
Vytaute Peciuliene

The present study evaluated the effect of ultrasonic agitation on the porosity distribution of BioRoot RCS/single gutta-percha cone (BR/SC) and MTA Flow (MF) root canals fillings used as apical plugs in moderately curved and apically perforated roots. Eighty mesial root canals of mandibular first molars were enlarged up to ProTaper NEXT X5 rotary instrument 2 mm beyond the apical foramen, simulating apical perforations. Specimens were randomly divided into four experimental groups (20 canals per group) according to the material and technique used for root canal obturation: BR/SC, BR/SC with ultrasonic agitation (BR/SC-UA), MF and MF with ultrasonic agitation (MF-UA). The ultrasonic tip was passively inserted into the root canal after the injection of flowable cement and activated for 10 s. The specimens were scanned before and after obturation with a high-resolution micro-computed tomography scanner, and the porosity of the apical plugs was assessed. The differences between groups were analyzed using the Kruskal-Wallis and Mann-Whitney tests, with the significance level set at 5%. None of the obturation materials and techniques used in this study was able to provide a pore-free root canal filling in the apical 5 mm. Considerably higher percentages of open and closed pores were observed in the MF and MF-UA groups, with the highest porosity being in the MF-UA group (p < 0.05). No significant differences were observed between the BR/SC and BR/SC-UA groups, where the quantity of open and closed pores remained similar (p > 0.05).


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4750
Author(s):  
Michael Hülsmann ◽  
Christoph Beckmann ◽  
Steffi Baxter

Chemomechanical preparation of the root canal system is considered to be the most important part of root canal treatment, including both mechanical removal of tissue remnants and dentine chips, and chemical elimination of biofilm and microorganisms. A number of different solutions and agitation techniques have been proposed for that purpose. It was the aim of the present study to investigate whether root canal cleanliness can be improved by using a hydroxyapatite nanoparticle-containing solution with and without sonic or ultrasonic agitation. Seventy-four single-rooted teeth were divided into four experimental groups (n = 15) and two control groups (n = 7). All teeth were split longitudinally and a groove and three holes were cut into the root canal wall and filled with dentinal debris. Final irrigation was performed using sodium hypochlorite or a hydroxyapatite nanoparticle-containing solution (Vector polish) activated with a sonically or an ultrasonically driven endodontic file. Two calibrated investigators rated the remaining debris using a four-score scale. The results were analyzed using a non-parametric test with α < 0.05. Sonic and ultrasonic irrigation with sodium hypochlorite cleaned the grooves and holes well from debris. The hydroxyapatite nanoparticles activated by a sonic file cleaned grooves and holes equally well. Ultrasonically activated nanoparticles performance was clearly inferior. The syringe control-group left large amounts of debris in grooves and holes. The use of the hydroxyapatite nanoparticles used in this study did not improve removal of debris.


2021 ◽  
Vol 13 (8) ◽  
pp. 4229
Author(s):  
Fakher Abbas ◽  
Fang Lin ◽  
Zhaolong Zhu ◽  
Shaoshan An

As soil stability is a complex phenomenon, various methods and indexes were introduced to assess the strength of soils. Because of the limitations of different stability methods and indexes (including wet sieving-based), we aimed to presents a relative stability index (RI) that was based on the estimated components of the soil overall disruptive characteristic curve (SODC): (1) soil disruption constant (Ki, that is based upon dispersion energy of soils); (2) resulting change in mean weight diameter (ΔMWD). To evaluate the effectiveness and limitations of RI as well as to compare it with classical soil stability indexes of mean weight diameter (MWD) and geometric mean diameter (GMD). Ultrasonic agitation (UA) along with a wet sieving method (followed by dry sieving) was applied against four different soils named on the basis of sample location, Qingling soil (QL), Guanzhong soil (GZ), Ansai soil (AS), and Jingbian soil (JB). To evaluate the relative strength of soils at different applied energies (increase in sonication duration usually resulted in increased input energy and temperature of soil–water suspension), soils were subjected to six sonication durations (0, 30, 60, 120, 210, and 300 s) with a fixed (and exact) initial amplitude and temperature. Output energy was calculated based on the amplitude and temperature of the suspension, vessel, and system. The most abrupt and maximum disruption of soil aggregates was observed at a dispersion energy level of 0–200 J g−1. The MWD value of surface and subsurface ranged between 0.58 to 0.15 mm and 0.37 to 0.17 mm, respectively, while GMD was ranged from 0.14 to 0.33 mm overall. The results for MWD and GMD showed a similar trend. MWD and GMD showed more strong associations with physicochemical characteristics of soil than RI. A non-significant correlation was found between RI and MWD/GMD. Contrary to MWD and GMD, RI was significantly positively correlated with sand content; this finding indicated the influential role of sand in assessing the soil’s relative strength. The results indicated that JB soil possessed the least MWD and GMD but proved to be relatively stable because of having the highest RI value.


2021 ◽  
Vol 33 (1) ◽  
pp. 39-43 ◽  
Author(s):  
Inês Ferreira ◽  
Ana Cristina Braga ◽  
Maria Ascensão Lopes ◽  
Irene Pina-Vaz
Keyword(s):  

2021 ◽  
Vol cilt: 5 sayı: 1 (cilt: 5 sayı: 1) ◽  
pp. 7-13
Author(s):  
Ebru SÜMER EKİN ◽  
Yalçın DEĞER ◽  
Zeynep BAŞAĞAOĞLU DEMİREKİN

Sign in / Sign up

Export Citation Format

Share Document