insect physiology
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 1)

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1054
Author(s):  
Rui-Xu Jiang ◽  
Feng Shang ◽  
Hong-Bo Jiang ◽  
Wei Dou ◽  
Tomislav Cernava ◽  
...  

The Asian citrus psyllid, D. citri Kuwayama is the primary vector for Candidatus Liberibacter asiaticus (CLas), which causes a destructive disease in citrus plants. Bacterial symbionts are important determinants of insect physiology, and they can be impacted by many external factors. Temperature is an important abiotic factor affecting insect physiology, and it is also known that differences in symbiont proportions may vary in different insect genders. To date, it is unclear how the symbionts of D. citri are affected by temperature and gender. This study used high-throughput sequencing of 16S ribosomal RNA amplicons to determine how temperature and gender affect the bacterial communities present in D. citri. We identified 27 amplicon sequence variants (ASVs) belonging to 10 orders, seven classes, and five phyla. The dominant phylum was Proteobacteria (99.93%). Other phyla, including Firmicutes, Bacteroidota, Deinococcota, Cyanobacteria, and Actinobacteriota, were less abundant (<0.1%). Profftella (71.77–81.59%) and Wolbachia (18.39–28.22%) were the predominant taxa in all samples. Under high-temperature treatment, Profftella was more common in females, while Wolbachia had a higher abundance in males. In males, Profftella was more abundant under low-temperature treatments than under high-temperature treatments. In contrast, Wolbachia showed a higher abundance under high-temperature treatments than under low-temperature treatments. An RT-qPCR (quantitative real-time PCR) approach confirmed the results obtained with high-throughput DNA sequencing. Our results provide a basis for understanding the co-adaptation of D. citri and its symbionts to environmental temperature stress.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2993
Author(s):  
Nannan Liu ◽  
Ting Li ◽  
Yifan Wang ◽  
Shikai Liu

G-protein coupled receptors (GPCRs) play important roles in cell biology and insects’ physiological processes, toxicological response and the development of insecticide resistance. New information on genome sequences, proteomic and transcriptome analysis and expression patterns of GPCRs in organs such as the central nervous system in different organisms has shown the importance of these signaling regulatory GPCRs and their impact on vital cell functions. Our growing understanding of the role played by GPCRs at the cellular, genome, transcriptome and tissue levels is now being utilized to develop new targets that will sidestep many of the problems currently hindering human disease control and insect pest management. This article reviews recent work on the expression and function of GPCRs in insects, focusing on the molecular complexes governing the insect physiology and development of insecticide resistance and examining the genome information for GPCRs in two medically important insects, mosquitoes and house flies, and their orthologs in the model insect species Drosophila melanogaster. The tissue specific distribution and expression of the insect GPCRs is discussed, along with fresh insights into practical aspects of insect physiology and toxicology that could be fundamental for efforts to develop new, more effective, strategies for pest control and resistance management.


2021 ◽  
Vol 22 (10) ◽  
pp. 5260
Author(s):  
Nannan Liu ◽  
Yifan Wang ◽  
Ting Li ◽  
Xuechun Feng

G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.


Author(s):  
Fei-Ying Yang ◽  
Wei-Yi He ◽  
Min-Sheng You

Research regarding the distribution of metabolites is a vital aspect of insect molecular biology. However, current approaches (e.g., liquid chromatography-mass spectrometry or immunofluorescence) have cons like requirement of massive tissues, low efficiency, and complicated operating processes. As an emerging technology, mass spectrometry imaging (MSI) can visualize the spatiotemporal distribution of molecules in biological samples without labeling. In this chapter, we retrospect the major types of in situ measurement by MSI, and the application of MSI for investigating insect endogenous and exogenous metabolites and monitoring the dynamic changes of metabolites involved with the interactions between insects and plants. Future studies that combine MSI with other genetic tools can facilitate to better explore the underlying mechanisms concerning insect physiology and metabolism.


Sign in / Sign up

Export Citation Format

Share Document