scholarly journals Effect of Channel Radius on Fluorescent Nanoparticle Based Molecular Communication

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Federico Calì ◽  
Luca Fichera ◽  
Nunzio Tuccitto

The effect of the communication channel size on the transport and subsequent detection of chemical messengers is investigated on millimetric and micrometric channels. The transport of the information carriers, being characterized by an advective and a diffusive contribution, was simulated by varying the flow velocity and the diffusion coefficient. Then, to evaluate the information quality, the Intersymbol Interference (ISI) between two consecutive signals at a specific release delay was estimated. This allowed us to verify that operating under micrometric channel conditions has a larger flow velocity range to obtain completely separated successive signals and smaller release delays can be used between signals. The theoretical results were confirmed by developing a prototype molecular communication platform operating under microfluidic conditions, which enables communication through fluorescent nanoparticles, namely Carbon Quantum Dots (CQDs).

Author(s):  
Federico Calì ◽  
Luca Fichera ◽  
Nunzio Tuccitto

The effect of the communication channel size on the transport and subsequent detection of chemical messengers is investigated on millimetric and micrometric channels. The transport of the information carriers, being characterized by an advective and a diffusive contribution, was simulated by varying the flow velocity and the diffusion coefficient. Then, to evaluate the information quality, the Intersymbol Interference (ISI) between two consecutive signals at a specific release delay was estimated. This allowed us to verify that operating under micrometric channel conditions has a larger flow velocity range to obtain completely separated successive signals and smaller release delays can be used between signals. The theoretical results were confirmed by developing a prototype molecular communication platform operating under microfluidic conditions, which enables communication through fluorescent nanoparticles, namely Carbon Quantum Dots (CQDs).


Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 202
Author(s):  
Federico Calì ◽  
Valentina Cantaro ◽  
Luca Fichera ◽  
Roberta Ruffino ◽  
Giuseppe Trusso Sfrazzetto ◽  
...  

A bioinspired method of communication among biodevices based on fluorescent nanoparticles is herein presented. This approach does not use electromagnetic waves but rather the exchange of chemical systems—a method known as molecular communication. The example outlined was based on the fluorescence properties of carbon dots and follows a circular economy approach as the method involves preparation from the juice of lemon waste. The synthesis is herein presented, and the fluorescence properties and diffusion coefficient are evaluated. The application of carbon dots to molecular communication was studied from a theoretical point of view by numerically solving the differential equation that governs the phenomenon. The theoretical results were used to develop a prototype molecular communication platform that enables the communication of simple messages via aqueous fluids to a fluorescence-detecting biodevice receiver.


1993 ◽  
Vol 250 ◽  
pp. 481-508 ◽  
Author(s):  
D. Brika ◽  
A. Laneville

In an experimental study of the vortex-induced oscillations of a long flexible circular cylinder, the observed stationary amplitudes describe an hysteresis loop partially different from earlier studies. Each branch of the loop is associated with a vortex shedding mode and, as a jump from one branch to the other occurs, the phase difference between the cylinder displacement and the vortex shedding undergoes an abrupt change. The critical flow velocities at which the jump occurs concur with the flow visualization observations of Williamson & Roshko (1988) on the vortex shedding modes near the fundamental synchronization region. Impulsive regimes, obtained at a given flow velocity with the cylinder initially at rest or pre-excited, and progressive regimes resulting from a variation of the flow velocity, are examined. The occurrence of bifurcations is detected for a flow velocity range in the case of the impulsive regimes. The coordinates of the bifurcations define a boundary between two vortex shedding modes, a boundary that verifies the critical curve obtained by Williamson & Roshko (1988). The experimental set-up of this study simulates half the wavelength of a vibrating cable, eliminates the end effects present in oscillating rigid cylinder set-up and has one of the lowest damping ratios reported for the study of this phenomenon.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jun Sung Park ◽  
Sang Tae Kim ◽  
Sang Yun Kim ◽  
Min Gi Jo ◽  
Myeong Jun Choi ◽  
...  

Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disease and chronic illness with long preclinical phases and a long clinical duration. Until recently, a lack of potential therapeutic agents against AD was the primary focus of research, which resulted in less effort directed towards developing useful diagnostic approaches. In this study, we developed a WO2002/088706 kit that is composed of fluorescent nanoparticles for the early detection of AD. We provided a fluorescent nanoparticle for detecting markers and a kit for the early diagnosis of AD. The kit consists of a probe molecule comprising an oligonucleotide capable of detecting one or more AD-specific microRNAs (miRNAs) and biomarkers related to AD. Through screening, we selected miR-106b, miR-146b, miR-181a, miR-200a, miR-34a, miR-124b, miR-153, miR-155, Aβ1-42 monomer (mAβ), Aβ1–42 oligomer (oAβ), UCHL1, NLRP3, Tau, STAT3, SORL1, Clusterin, APOE3, APOE4, Nogo-A, IL-13, and Visfatin to serve as AD- and inflammation-related markers. For detection of kit-binding properties, we checked the expression levels of amyloid beta (Aβ), tau protein, and inflammatory mediators in APP/PS/ApoE knockdown (KD) mice and a control group using co-localisation analysis conducted with a confocal microscope. Using a similar approach, we checked the expression levels of miRNAs in HT22 cells. Finally, we used the plasma from AD patients to confirm that our fluorescent nanoparticles and the WO2002/088706 kit will provide a possible early diagnosis to serve as an AD detector that can be further improved for future studies on targeting AD.


2018 ◽  
Vol 66 (8) ◽  
pp. 3420-3433 ◽  
Author(s):  
Muneer M. Al-Zu'bi ◽  
Ananda Mohan Sanagavarapu

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1556
Author(s):  
Cristian Silviu Moldovan ◽  
Anca Onaciu ◽  
Valentin Toma ◽  
Radu Marginean ◽  
Alin Moldovan ◽  
...  

Background: Cytochrome c (Cyt c) is a key biomarker for early apoptosis, and many methods were designed to detect its release from mitochondria. For a proper evaluation of these programed cell death mechanisms, fluorescent nanoparticles are excellent candidates due to their valuable optical properties. Among all classes of nanoparticles developed thus far, carbon-based quantum dots bring qualitative and efficient imaging strategies for biomedical applications as a consequence of their biocompatibility and low cytotoxicity. Methods: In this study, we synthesized carbon quantum dots smaller than 5 nm from sodium citrate and polyethylene imine. These nanoparticles were rigorously characterized, and their quenching capacity in apoptotic events was assessed in A549 cells treated with staurosporine and etoposide. For the evaluation of Cyt c release, a phenomenon directly correlated with apoptotic events, we ran a semiquantitative analysis using confocal laser scanning microscopy. Results: Carbon quantum dots were synthesized and were successfully employed for Cyt c detection by means of fluorescence microscopy. Significant drops in fluorescence intensity were observed in the case of cells treated with apoptosis-inducing therapeutic compounds compared to untreated cells, confirming Cyt c release from mitochondria to cytosol. Conclusion: Considering these results, we strongly believe this method can contribute to an indirect in vitro evaluation of apoptosis.


Sign in / Sign up

Export Citation Format

Share Document