scholarly journals A Modular Strategy for Expanding Electron-Sink Capacity in Noncanonical Cluster Assemblies

Author(s):  
Yume Mai ◽  
Alexandria K. Balzen ◽  
Rebecca K. Torres ◽  
Michael P. Callahan ◽  
Adam C. Colson
Keyword(s):  
BIOspektrum ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 208-210
Author(s):  
Marc M. Nowaczyk ◽  
Hanna C. Grimm ◽  
Leen Assil-Companioni ◽  
Robert Kourist

AbstractThe highly optimized natural process of oxygenic photosynthesis leads to the formation of redox equivalents, such as NADPH, that can be used to fuel heterologous biotransformations in phototrophic microorganisms. We investigated the reduction of 2-methylmaleimide by the ene-reductase YqjM in the cyanobacterium Synechocystis sp. PCC 6803 and doubled the productivity of the cells by inactivating flavodiironproteins (FDPs) as competing electron sink under self-shading conditions, reaching 18.3 mmol h−1 L−1.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Gan ◽  
Jingxiu Yang ◽  
David Morris ◽  
Xuefeng Chu ◽  
Peng Zhang ◽  
...  

AbstractActivation of O2 is a critical step in heterogeneous catalytic oxidation. Here, the concept of increased electron donors induced by nitrogen vacancy is adopted to propose an efficient strategy to develop highly active and stable catalysts for molecular O2 activation. Carbon nitride with nitrogen vacancies is prepared to serve as a support as well as electron sink to construct a synergistic catalyst with Pt nanoparticles. Extensive characterizations combined with the first-principles calculations reveal that nitrogen vacancies with excess electrons could effectively stabilize metallic Pt nanoparticles by strong p-d coupling. The Pt atoms and the dangling carbon atoms surround the vacancy can synergistically donate electrons to the antibonding orbital of the adsorbed O2. This synergistic catalyst shows great enhancement of catalytic performance and durability in toluene oxidation. The introduction of electron-rich non-oxide substrate is an innovative strategy to develop active Pt-based oxidation catalysts, which could be conceivably extended to a variety of metal-based catalysts for catalytic oxidation.


2021 ◽  
Vol 9 (3) ◽  
pp. 474
Author(s):  
Sara Díaz-Rullo Edreira ◽  
Silvia Barba ◽  
Ioanna A. Vasiliadou ◽  
Raúl Molina ◽  
Juan Antonio Melero ◽  
...  

Bioelectrochemical systems are a promising technology capable of reducing CO2 emissions, a renewable carbon source, using electroactive microorganisms for this purpose. Purple Phototrophic Bacteria (PPB) use their versatile metabolism to uptake external electrons from an electrode to fix CO2. In this work, the effect of the voltage (from −0.2 to −0.8 V vs. Ag/AgCl) on the metabolic CO2 fixation of a mixed culture of PPB under photoheterotrophic conditions during the oxidation of a biodegradable carbon source is demonstrated. The minimum voltage to fix CO2 was between −0.2 and −0.4 V. The Calvin–Benson–Bassham (CBB) cycle is the main electron sink at these voltages. However, lower voltages caused the decrease in the current intensity, reaching a minimum at −0.8 V (−4.75 mA). There was also a significant relationship between the soluble carbon uptake in terms of chemical oxygen demand and the electron consumption for the experiments performed at −0.6 and −0.8 V. These results indicate that the CBB cycle is not the only electron sink and some photoheterotrophic metabolic pathways are also being affected under electrochemical conditions. This behavior has not been tested before in photoheterotrophic conditions and paves the way for the future development of photobioelectrochemical systems under heterotrophic conditions.


2011 ◽  
Vol 193 (18) ◽  
pp. 4758-4765 ◽  
Author(s):  
D. A. C. Beck ◽  
E. L. Hendrickson ◽  
A. Vorobev ◽  
T. Wang ◽  
S. Lim ◽  
...  

2016 ◽  
Vol 113 (43) ◽  
pp. 12322-12327 ◽  
Author(s):  
Caterina Gerotto ◽  
Alessandro Alboresi ◽  
Andrea Meneghesso ◽  
Martina Jokel ◽  
Marjaana Suorsa ◽  
...  

Photosynthetic organisms support cell metabolism by harvesting sunlight to fuel the photosynthetic electron transport. The flow of excitation energy and electrons in the photosynthetic apparatus needs to be continuously modulated to respond to dynamics of environmental conditions, and Flavodiiron (FLV) proteins are seminal components of this regulatory machinery in cyanobacteria. FLVs were lost during evolution by flowering plants, but are still present in nonvascular plants such as Physcomitrella patens. We generated P. patens mutants depleted in FLV proteins, showing their function as an electron sink downstream of photosystem I for the first seconds after a change in light intensity. flv knock-out plants showed impaired growth and photosystem I photoinhibition when exposed to fluctuating light, demonstrating FLV’s biological role as a safety valve from excess electrons on illumination changes. The lack of FLVs was partially compensated for by an increased cyclic electron transport, suggesting that in flowering plants, the FLV’s role was taken by other alternative electron routes.


2021 ◽  
Author(s):  
Marine Valmier ◽  
Matthew Saunders ◽  
Gary Lanigan

<p>Grassland-based agriculture in Ireland contributes over one third of national greenhouse gas (GHG) emissions, and the LULUCF sector is a net GHG source primarily due to the ongoing drainage of peat soils. Rewetting of peat-based organic soils is now recognised as an attractive climate mitigation strategy, but reducing emissions and restoring the carbon sequestration potential is challenging, and is not always feasible notably due to agricultural demands. Nonetheless, reducing carbon losses from drained organic soils has been identified as a key action for Ireland to reach its climate targets, and carbon storage associated with improved grassland management practices can provide a suitable strategy to offset GHG emissions without compromising productivity. However, research is still needed to assess the best practices and management options for optimum environmental and production outcomes. While grasslands have been widely studied internationally, data on organic soils under this land use are still scarce. In Ireland, despite their spatial extent and relevance to the national emission inventories and mitigation strategies, only two studies on GHG emissions from grasslands on peat soils have been published.</p><p>Here we present results from a grassland on a drained organic soil that is extensively managed for silage production in the Irish midlands. Continuous monitoring of Net Ecosystem Exchange (NEE) of carbon dioxide (CO<sub>2</sub>) using eddy covariance techniques, and weekly static chamber measurements to assess soil derived emissions of methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O) started in 2020. The seasonal CO<sub>2</sub> fluxes observed were greatly dependent on weather conditions and management events. The grassland shifted from a carbon source at the beginning of the year to a sink during the growing season, with carbon uptakes in April and May ranging from 15 to 40 µmol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup> and releases in the order of 5 µmol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>. Following the first harvest event in early June, approximately 2.5 t C ha<sup>-1</sup> was exported, and the sink capacity took around one month to recover, with an average NEE of 10 µmol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup> during that period. Carbon uptake then reached a maximum of 25 µmol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup> in August. After the second cut in mid-September, which corresponded to an export of 2.25 t.ha<sup>-1</sup> of carbon, the grassland acted once again as a strong carbon source, losing almost 30 g C m<sup>-2</sup> in a month, before stabilising and behaving as an overall small source during the winter period.</p><p>In summary, this grassland demonstrated high rates of carbon assimilation and productivity that translate in a strong carbon sink capacity highly dependent on the management. The biomass harvest is a major component of the annual budget that has the potential to shift the system to a net carbon source. Moreover, while initial measurements of CH<sub>4</sub> and N<sub>2</sub>O fluxes appeared to be negligible, some management events were not assessed due to national COVID 19 restrictions on movement, which might have impacted the sink strength of the site studied.</p>


2013 ◽  
Vol 105 (3) ◽  
pp. 591-598 ◽  
Author(s):  
Ling-duo Bu ◽  
Lin Zhu ◽  
Jian-liang Liu ◽  
Sha-sha Luo ◽  
Xin-ping Chen ◽  
...  

2012 ◽  
Vol 66 (4) ◽  
pp. 748-753 ◽  
Author(s):  
Jaecheul Yu ◽  
Younghyun Park ◽  
Haein Cho ◽  
Jieun Chun ◽  
Jiyun Seon ◽  
...  

Microbial fuel cells (MFCs) can convert chemical energy to electricity using microbes as catalysts and a variety of organic wastewaters as substrates. However, electron loss occurs when fermentable substrates are used because fermentation bacteria and methanogens are involved in electron flow from the substrates to electricity. In this study, MFCs using glucose (G-MFC), propionate (P-MFC), butyrate (B-MFC), acetate (A-MFC), and a mix (M-MFC, glucose:propionate:butyrate:acetate = 1:1:1:1) were operated in batch mode. The metabolites and microbial communities were analyzed. The current was the largest electron sink in M-, G-, B-, and A-MFCs; the initial chemical oxygen demands (CODini) involved in current production were 60.1% for M-MFC, 52.7% for G-MFC, 56.1% for B-MFC, and 68.3% for A-MFC. Most of the glucose was converted to propionate (40.6% of CODini) and acetate (21.4% of CODini) through lactate (80.3% of CODini) and butyrate (6.1% of CODini). However, an unknown source (62.0% of CODini) and the current (34.5% of CODini) were the largest and second-largest electron sinks in P-MFC. Methane gas was only detected at levels of more than 10% in G- and M-MFCs, meaning that electrochemically active bacteria (EAB) could out-compete acetoclastic methanogens. The microbial communities were different for fermentable and non-fermentable substrate-fed MFCs. Probably, bacteria related to Lactococcus spp. found in G-MFCs with fermentable substrates would be involved in both fermentation and electricity generation. Acinetobacter-like species, and Rhodobacter-like species detected in all the MFCs would be involved in oxidation of organic compounds and electricity generation.


Sign in / Sign up

Export Citation Format

Share Document