scholarly journals Exploring the hydrostatic mass bias in MUSIC clusters: application to the NIKA2 mock sample

Author(s):  
Giulia Gianfagna ◽  
Marco De Petris ◽  
Gustavo Yepes ◽  
Federico De Luca ◽  
Federico Sembolini ◽  
...  

Abstract Clusters of galaxies are useful tools to constrain cosmological parameters, only if their masses can be correctly inferred from observations. In particular, X-ray and Sunyaev-Zeldovich (SZ) effect observations can be used to derive masses within the framework of the hydrostatic equilibrium. Therefore, it is crucial to have a good control of the possible mass biases that can be introduced when this hypothesis is not valid. In this work, we analyzed a set of 260 synthetic clusters from the MUSIC simulation project, at redshifts 0 ≤ z ≤ 0.82. We estimate the hydrostatic mass of the MUSIC clusters from X-ray only (temperature and density) and from X-ray and SZ (density and pressure). Then, we compare them with the true 3D dynamical mass. The biases are of the order of 20%. We find that using the temperature instead of the pressure leads to a smaller bias, although the two values are compatible within 1σ. Non-thermal contributions to the total pressure support, arising from bulk motion and turbulence of the gas, are also computed and show that they are sufficient to account for this bias. We also present a study of the correlation between the mass bias and the dynamical state of the clusters. A clear correlation is shown between the relaxation state of the clusters and the bias factor. We applied the same analysis on a subsample of 32 objects, already selected for supporting the NIKA2 SZ Large Program.

2020 ◽  
Vol 644 ◽  
pp. A126
Author(s):  
C. Tchernin ◽  
E. T. Lau ◽  
S. Stapelberg ◽  
D. Hug ◽  
M. Bartelmann

Context. Biases in mass measurements of galaxy clusters are one of the major limiting systematics in constraining cosmology with clusters. Aims. We aim to demonstrate that the systematics associated with cluster gravitational potentials are smaller than the hydrostatic mass bias and that cluster potentials could therefore be a good alternative to cluster masses in cosmological studies. Methods. Using cosmological simulations of galaxy clusters, we compute the biases in the hydrostatic mass (HE mass) and those in the gravitational potential, reconstructed from measurements at X-ray and millimeter wavelengths. In particular, we investigate the effects of the presence of substructures and of nonthermal pressure support on both the HE mass and the reconstructed potential. Results. We find that the bias in the reconstructed potential (6%) is less than that of the HE mass (13%) and that the scatter in the reconstructed potential decreases by ∼35% with respect to that in the HE mass. Conclusions. This study shows that characterizing galaxy clusters by their gravitational potential is a promising alternative to using cluster masses in cluster cosmology.


2020 ◽  
Vol 634 ◽  
pp. A113 ◽  
Author(s):  
S. Ansarifard ◽  
E. Rasia ◽  
V. Biffi ◽  
S. Borgani ◽  
W. Cui ◽  
...  

Accurate and precise measurement of the masses of galaxy clusters is key to deriving robust constraints on cosmological parameters. However, increasing evidence from observations confirms that X-ray masses obtained under the assumption of hydrostatic equilibrium might be underestimated, as previously predicted by cosmological simulations. We analyze more than 300 simulated massive clusters from the Three Hundred Project, and investigate the connection between mass bias and several diagnostics extracted from synthetic X-ray images of these simulated clusters. We find that the azimuthal scatter measured in 12 sectors of the X-ray flux maps is a statistically significant indication of the presence of an intrinsic (i.e., 3D) clumpy gas distribution. We verify that a robust correction to the hydrostatic mass bias can be inferred when estimates of the gas inhomogeneity from X-ray maps (such as the azimuthal scatter or the gas ellipticity) are combined with the asymptotic external slope of the gas density or pressure profiles, which can be respectively derived from X-ray and millimeter (Sunyaev-Zeldovich effect) observations. We also obtain that mass measurements based on either gas density and temperature or gas density and pressure result in similar distributions of the mass bias. In both cases, we provide corrections that help reduce both the dispersion and skewness of the mass bias distribution. These are effective even when irregular clusters are included leading to interesting implications for the modeling and correction of hydrostatic mass bias in cosmological analyses of current and future X-ray and SZ cluster surveys.


2016 ◽  
Vol 466 (3) ◽  
pp. 3663-3673 ◽  
Author(s):  
Melanie Simet ◽  
Nicholas Battaglia ◽  
Rachel Mandelbaum ◽  
Uroš Seljak
Keyword(s):  
X Ray ◽  

2012 ◽  
Vol 68 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Kohei Johmoto ◽  
Takashi Ishida ◽  
Akiko Sekine ◽  
Hidehiro Uekusa ◽  
Yuji Ohashi

The crystal structures of the salicylideneaniline derivatives N-salicylidene-4-tert-butyl-aniline (1), N-3,5-di-tert-butyl-salicylidene-3-methoxyaniline (2), N-3,5-di-tert-butyl-salicylidene-3-bromoaniline (3), N-3,5-di-tert-butyl-salicylidene-3-chloroaniline (4), N-3,5-di-tert-butyl-salicylidene-4-bromoaniline (5), N-3,5-di-tert-butyl-salicylidene-aniline (6), N-3,5-di-tert-butyl-salicylidene-4-carboxyaniline (7) and N-salicylidene-2-chloroaniline (8) were analyzed by X-ray diffraction analysis at ambient temperature to investigate the relationship between their photochromic properties and molecular structures. A clear correlation between photochromism and the dihedral angle of the two benzene rings in the salicylideneaniline derivatives was observed. Crystals with dihedral angles less than 20° were non-photochromic, whereas those with dihedral angles greater than 30° were photochromic. Crystals with dihedral angles between 20 and 30° could be either photochromic or non-photochromic. Inhibition of the pedal motion by intra- or intermolecular steric hindrance, however, can result in non-photochromic behaviour even if the dihedral angle is larger than 30°.


2018 ◽  
Vol 611 ◽  
pp. A50 ◽  
Author(s):  
Konstantinos Migkas ◽  
Thomas H. Reiprich

We introduce a new test to study the cosmological principle with galaxy clusters. Galaxy clusters exhibit a tight correlation between the luminosity and temperature of the X-ray-emitting intracluster medium. While the luminosity measurement depends on cosmological parameters through the luminosity distance, the temperature determination is cosmology-independent. We exploit this property to test the isotropy of the luminosity distance over the full extragalactic sky, through the normalization a of the LX–T scaling relation and the cosmological parameters Ωm and H0. To this end, we use two almost independent galaxy cluster samples: the ASCA Cluster Catalog (ACC) and the XMM Cluster Survey (XCS-DR1). Interestingly enough, these two samples appear to have the same pattern for a with respect to the Galactic longitude. More specifically, we identify one sky region within l ~ (−15°, 90°) (Group A) that shares very different best-fit values for the normalization of the LX–T relation for both ACC and XCS-DR1 samples. We use the Bootstrap and Jackknife methods to assess the statistical significance of these results. We find the deviation of Group A, compared to the rest of the sky in terms of a, to be ~2.7σ for ACC and ~3.1σ for XCS-DR1. This tension is not significantly relieved after excluding possible outliers and is not attributed to different redshift (z), temperature (T), or distributions of observable uncertainties. Moreover, a redshift conversion to the cosmic microwave background (CMB) frame does not have an important impact on our results. Using also the HIFLUGCS sample, we show that a possible excess of cool-core clusters in this region, is not able to explain the obtained deviations. Furthermore, we tested for a dependence of the results on supercluster environment, where the fraction of disturbed clusters might be enhanced, possibly affecting the LX–T relation. We indeed find a trend in the XCS-DR1 sample for supercluster members to be underluminous compared to field clusters. However, the fraction of supercluster members is similar in the different sky regions, so this cannot explain the observed differences, either. Constraining Ωm and H0 via the redshift evolution of LX–T and the luminosity distance via the flux–luminosity conversion, we obtain approximately the same deviation amplitudes as for a. It is interesting that the general observed behavior of Ωm for the sky regions that coincide with the CMB dipole is similar to what was found with other cosmological probes such as supernovae Ia. The reason for this behavior remains to be identified.


2018 ◽  
Vol 619 ◽  
pp. A95 ◽  
Author(s):  
E. Chiaraluce ◽  
F. Vagnetti ◽  
F. Tombesi ◽  
M. Paolillo

Context. The well established negative correlation between the αOX spectral slope and the optical/ultraviolet (UV) luminosity, a by-product of the relation between X-rays and optical/UV luminosity, is affected by relatively large dispersion. The main contributors to this dispersion can be variability in the X-ray/UV ratio and/or changes in fundamental physical parameters. Aims. We want to quantify the contribution from variability within single sources (intra-source dispersion) and that from variations of other quantities different from source to source (inter-source dispersion). Methods. We use archival data from the XMM-Newton Serendipitous Source Catalog (XMMSSC) and from the XMM-OM Serendipitous Ultraviolet Source Survey (XMMOM-SUSS3). We select a sub-sample in order to decrease the dispersion of the relation due to the presence of radio-loud and broad absorption line objects, and that due to absorptions in both X-ray and optical/UV bands. We use the structure function (SF) to estimate the contribution from variability to the dispersion. We analyse the dependence of the residuals of the relation on various physical parameters in order to characterise the inter-source dispersion. Results. We find a total dispersion of σ ∼ 0.12 and find that intrinsic variability contributes 56% of the variance of the αOX − LUV relation. If we select only sources with a larger number of observational epochs (≥3) the dispersion of the relation decreases by approximately 15%. We find weak but significant dependencies of the residuals of the relation on black-hole mass and on Eddington ratio, which are also confirmed by a multivariate regression analysis of αOX as a function of UV luminosity and black-hole mass and/or Eddington ratio. We find a weak positive correlation of both the αOX index and the residuals of the αOX − LUV relation with inclination indicators, such as the full width at half maximum (Hβ) and the equivalent width (EW)[OIII], suggesting a weak increase of X-ray/UV ratio with the viewing angle. This suggests the development of new viewing angle indicators possibly applicable at higher redshifts. Moreover, our results suggest the possibility of selecting a sample of objects, based on their viewing angle and/or black-hole mass and Eddington ratio, for which the αOX − LUV relation is as tight as possible, in light of the use of the optical/UV – X-ray luminosity relation to build a distance modulus (DM)-z plane and estimate cosmological parameters.


2020 ◽  
Vol 499 (2) ◽  
pp. 3006-3018
Author(s):  
Bangzheng Sun ◽  
Marina Orio ◽  
Andrej Dobrotka ◽  
Gerardo Juan Manuel Luna ◽  
Sergey Shugarov ◽  
...  

ABSTRACT We present X-ray observations of novae V2491 Cyg and KT Eri about 9 yr post-outburst of the dwarf nova and post-nova candidate EY Cyg, and of a VY Scl variable. The first three objects were observed with XMM–Newton, KT Eri also with the Chandra ACIS-S camera, V794 Aql with the Chandra ACIS-S camera and High Energy Transmission Gratings. The two recent novae, similar in outburst amplitude and light curve, appear very different at quiescence. Assuming half of the gravitational energy is irradiated in X-rays, V2491 Cyg is accreting at $\dot{m}=1.4\times 10^{-9}{\!-\!}10^{-8}\,{\rm M}_\odot \,{\rm yr}^{-1}$, while for KT Eri, $\dot{m}\lt 2\times 10^{-10}{\rm M}_\odot \,{\rm yr}$. V2491 Cyg shows signatures of a magnetized WD, specifically of an intermediate polar. A periodicity of  39 min, detected in outburst, was still measured and is likely due to WD rotation. EY Cyg is accreting at $\dot{m}\sim 1.8\times 10^{-11}{\rm M}_\odot \,{\rm yr}^{-1}$, one magnitude lower than KT Eri, consistently with its U Gem outburst behaviour and its quiescent UV flux. The X-rays are modulated with the orbital period, despite the system’s low inclination, probably due to the X-ray flux of the secondary. A period of  81 min is also detected, suggesting that it may also be an intermediate polar. V794 Aql had low X-ray luminosity during an optically high state, about the same level as in a recent optically low state. Thus, we find no clear correlation between optical and X-ray luminosity: the accretion rate seems unstable and variable. The very hard X-ray spectrum indicates a massive WD.


2020 ◽  
Vol 497 (1) ◽  
pp. 263-278 ◽  
Author(s):  
Narayan Khadka ◽  
Bharat Ratra

ABSTRACT Risaliti and Lusso have compiled X-ray and UV flux measurements of 1598 quasars (QSOs) in the redshift range 0.036 ≤ z ≤ 5.1003, part of which, z ∼ 2.4 − 5.1, is largely cosmologically unprobed. In this paper we use these QSO measurements, alone and in conjunction with baryon acoustic oscillation (BAO) and Hubble parameter [H(z)] measurements, to constrain cosmological parameters in six different cosmological models, each with two different Hubble constant priors. In most of these models, given the larger uncertainties, the QSO cosmological parameter constraints are mostly consistent with those from the BAO + H(z) data. A somewhat significant exception is the non-relativistic matter density parameter Ωm0 where QSO data favour Ωm0 ∼ 0.5 − 0.6 in most models. As a result, in joint analyses of QSO data with H(z) + BAO data the 1D Ωm0 distributions shift slightly towards larger values. A joint analysis of the QSO + BAO + H(z) data is consistent with the current standard model, spatially-flat ΛCDM, but mildly favours closed spatial hypersurfaces and dynamical dark energy. Since the higher Ωm0 values favoured by QSO data appear to be associated with the z ∼ 2 − 5 part of these data, and conflict somewhat with strong indications for Ωm0 ∼ 0.3 from most z < 2.5 data as well as from the cosmic microwave background anisotropy data at z ∼ 1100, in most models, the larger QSO data Ωm0 is possibly more indicative of an issue with the z ∼ 2 − 5 QSO data than of an inadequacy of the standard flat ΛCDM model.


1988 ◽  
Vol 128 ◽  
Author(s):  
R. A. Roy ◽  
R. Petkie ◽  
D. S. Yee ◽  
J. Karasinski ◽  
A. Boulding

ABSTRACTThe modification of film stress in evaporated tungsten was studied as a function of deposition environment. Using concurrent ion bombardment of the growing film, the stress was seen to vary systematically with ion energy, ion flux, and substrate temperature. The qualitative behavior fits the model of stress modification developed for niobium films. X-ray diffraction was used to study the structure of the films, and a clear correlation between crystallographic texture and film stress is found. The original structure/impurity model for film stress modification due to ion bombardment has been modified to account for the relationship between film stress and texture.


1989 ◽  
Vol 134 ◽  
pp. 161-166
Author(s):  
Claude R. Canizares ◽  
Julia L. White

We present mean spectral parameters for various ensembles of quasars observed with the Einstein Observatory Imaging Proportional Counter (IPC). Our sample contains 71 optically or radio selected quasars with 0.1 < z < 3.5, Galactic NH < 1021 cm−2, total counts of 30 −500, and IPC gain < 19. Quasars are grouped into ensembles according to radio properties (Flat Radio Spectrum [FRS], Steep Radio Spectrum [SRS] or Radio Quiet [RQ]), and either redshift or X-ray luminosity, lx. We find a clear correlation between radio properties and α. FRS quasars have α∼0.4, SRS quasars have α∼0.7 and RQ quasars have α ∼1–1.4. There is no evidence for a dependence of α on z nor, for the FRS and SRS ensembles, on lx over nearly three decades. FRS quasars with 2.0 < z < 3.5 have just as flat mean spectra as those with low z, implying that a single power law, which is flatter than the canonical one with α ∼ 0.65, continues into the 1–10 keV band (in which the observed softer X-rays were emitted). Unfortunately, the results for high redshift and high lx RQ quasars are ambiguous because of systematic uncertainties in the ensemble means. Thus we cannot test the two-component spectral hypothesis of Wilkes and Elvis for these objects. SRS X-ray spectra could be steeper than FRS spectra because of the mixing of two components, although a single intrinsically steeper spectrum is easier to reconcile with the absence of z dependence. The uncertainty in a for RQ quasars with high z leaves open the important question of their contribution to the cosmic X-ray background.


Sign in / Sign up

Export Citation Format

Share Document