stimulatory g protein
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 19)

H-INDEX

34
(FIVE YEARS 1)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ping Yin ◽  
Dan Li ◽  
Qi Zhao ◽  
Mingming Cai ◽  
Zhenru Wu ◽  
...  

AbstractThe stimulatory G-protein alpha subunit (Gsα), a ubiquitously expressed protein, mediates G-protein receptor-stimulated signal transduction. To investigate the functions of Gsα in cardiomyocytes. We developed transverse aortic constriction (TAC)-induced heart failure mouse models and tamoxifen-inducible transgenic mice with cardiac-specific Gsα disruption. We detected alterations in Gsα expression in TAC-induced heart failure mice. Moreover, we examined cardiac function and structure in mice with genetic Gsα deletion and investigated the underlying molecular mechanisms of Gsα function. We found that Gsα expression increased during the compensated cardiac hypertrophy period and decreased during the heart failure period. Moreover, cardiac-specific Gsα disruption deteriorated cardiac function and induced severe cardiac remodeling. Mechanistically, Gsα disruption decreased CREB1 expression and inhibited the Bmp10-mediated signaling pathway. In addition, we found that Gsα regulates Bmp10 expression through the binding of CREB1 to the Bmp10 promoter. Our results suggest that fluctuations in Gsα levels may play a vital role in the development of heart failure and that loss of Gsα function facilitates cardiac remodeling.


Author(s):  
Angelo Milioto ◽  
Monica Reyes ◽  
Patrick Hanna ◽  
Zentaro Kiuchi ◽  
Serap Turan ◽  
...  

Abstract Context Pseudohypoparathyroidism type Ib (PHP1B) is characterized by hypocalcemia and hyperphosphatemia due to PTH-resistance in the proximal renal tubules. Maternal pathogenic STX16/GNAS variants leading to maternal epigenetic GNAS changes impair expression of the stimulatory G protein alpha-subunit (Gsα) thereby causing autosomal dominant PHP1B (AD-PHP1B). In contrast, genetic defects responsible for sporadic PHP1B (sporPHP1B) remain mostly unknown. Objective Determine whether PHP1B encountered after in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) causes GNAS re-methylation defects similar to those in sporPHP1B. Design Retrospective analysis. Results Nine among thirty-six sporPHP1B patients investigated since 2000, all with LOM at the three maternal GNAS DMRs and gain-of-methylation (GOM) at the paternal NESP DMR, had been conceived through IVF or ICSI. Besides abnormal GNAS methylation, IVF/ICSI-PHP1B cases revealed no additional imprinting defects. Three of these PHP1B patients have dizygotic twins and four have IVF/ICSI-conceived siblings, all with normal GNAS methylation; two unaffected younger siblings were conceived naturally. Conclusion Sporadic and IVF/ICSI-conceived PHP1B patients revealed indistinguishable epigenetic changes at all four GNAS DMRs thus suggesting a similar underlying disease mechanism. Given that re-methylation at the three maternal DMRs occurs during oogenesis, male factors are unlikely to cause LOM post-fertilization. Instead, at least some of the sporPHP1B variants could be caused by a defect(s) in an oocyte-expressed gene that is required for fertility and for re-establishing maternal GNAS methylation imprints. It remains uncertain, however, whether lack of GNAS re-methylation alone impairs oocyte maturation because of insufficient Gsα expression, thus necessitating Assisted Reproductive Technology (ART) for conception.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiao-Cui Yuan ◽  
Xiang-Ji Yan ◽  
Li-Xia Tian ◽  
Yi-Xiao Guo ◽  
Yu-Long Zhao ◽  
...  

Knee osteoarthritis (KOA) is a common and disabling condition characterized by attacks of pain around the joints, and it is a typical disease that develops chronic pain. Previous studies have proved that 5-HT1, 5-HT2, and 5-HT3 receptors in the spinal cord are involved in electroacupuncture (EA) analgesia. The 5-HT7 receptor plays antinociceptive role in the spinal cord. However, it is unclear whether the 5-HT7 receptor is involved in EA analgesia. The 5-HT7 receptor is a stimulatory G-protein (Gs)-coupled receptor that activates adenylyl cyclase (AC) to stimulate cyclic adenosine monophosphate (cAMP) formation, which in turn activates protein kinase A (PKA). In the present study, we found that EA significantly increased the tactile threshold and the expression of the 5-HT7 receptor in the dorsal spinal cord. Intrathecal injection of 5-HT7 receptor agonist AS-19 mimicked the analgesic effect of EA, while a selective 5-HT7 receptor antagonist reversed this effect. Moreover, intrathecal injection of AC and PKA antagonists prior to EA intervention prevented its anti-allodynic effect. In addition, GABAA receptor antagonist bicuculline administered (intrathecal, i.t.) prior to EA intervention blocked the EA effect on pain hypersensitivity. Our data suggest that the spinal 5-HT7 receptor activates GABAergic neurons through the Gs–cAMP–PKA pathway and participates in EA-mediated inhibition of chronic pain in a mouse model of KOA.


2021 ◽  
Author(s):  
Yingna Xu ◽  
Wenbo Feng ◽  
Qingtong Zhou ◽  
Anyi Liang ◽  
Jie Li ◽  
...  

Activated by physiologically important peptide hormones, class B1 G protein-coupled receptors (GPCRs) modulate key physiological functions and serve as valuable drug targets for many diseases. Among them, vasoactive intestinal polypeptide receptor 2 (VIP2R) is the last member whose full-length 3-dimensional structure has yet to be determined. VIP2R, expressed in the central and peripheral nervous systems and involved in a number of pathophysiological conditions, is implicated in pulmonary arterial hypertension, autoimmune and psychiatric disorders. Here, we report the cryo-electron microscopy structure of the human VIP2R bound to its endogenous ligand PACAP27 and the stimulatory G protein. Different from all reported peptide-bound class B1 GPCR structures, the N-terminal α-helix of VIP2R adopts a unique conformation that deeply inserts into a cleft between PACAP27 and the extracellular loop 1, thereby stabilizing the peptide-receptor interface. Its truncation or extension significantly decreased VIP2R-mediated cAMP accumulation. Our results provide additional information on peptide recognition and receptor activation among class B1 GPCRs and may facilitate the design of better therapeutics.


2021 ◽  
Author(s):  
Shanshan Ma ◽  
Yan Chen ◽  
Antao Dai ◽  
Wanchao Yin ◽  
Jia Guo ◽  
...  

Melanocortins are peptide hormones critical for stress response, energy homeostasis, inflammation, and skin pigmentation. Their functions are mediated by five G protein-coupled receptors (MC1R to MC5R), predominately through the stimulatory G protein (Gs). MC1R, the founding member of melanocortin receptors, is mainly expressed in melanocytes and is involved in melanogenesis. Dysfunction of MC1R is associated with the development of melanoma and skin cancer. Here we present three cryo-electron microscopy structures of the MC1R-Gs complexes bound to endogenous hormone α-MSH, a marketed drug afamelanotide, and a synthetic agonist SHU9119. These structures reveal the orthosteric binding pocket for the conserved HFRW motif among melanocortins and the crucial role of calcium ion in ligand binding. They also demonstrate the basis of differential activities among different ligands. In addition, unexpected interactions between MC1R and the Gβ subunit were discovered from these structures. Together, our results provide a conserved mechanism of calcium-mediated ligand recognition, specific mode of G protein coupling, and a universal activation pathway of melanocortin receptors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Quixia Cui ◽  
Cagri Aksu ◽  
Birol Ay ◽  
Claire E. Remillard ◽  
Antonius Plagge ◽  
...  

GNAS encodes the stimulatory G protein alpha-subunit (Gsα) and its large variant XLαs. Studies have suggested that XLαs is expressed exclusively paternally. Thus, XLαs deficiency is considered to be responsible for certain findings in patients with paternal GNAS mutations, such as pseudo-pseudohypoparathyroidism, and the phenotypes associated with maternal uniparental disomy of chromosome 20, which comprises GNAS. However, a study of bone marrow stromal cells (BMSC) suggested that XLαs could be biallelically expressed. Aberrant BMSC differentiation due to constitutively activating GNAS mutations affecting both Gsα and XLαs is the underlying pathology in fibrous dysplasia of bone. To investigate allelic XLαs expression, we employed next-generation sequencing and a polymorphism common to XLαs and Gsα, as well as A/B, another paternally expressed GNAS transcript. In mouse BMSCs, Gsα transcripts were 48.4 ± 0.3% paternal, while A/B was 99.8 ± 0.2% paternal. In contrast, XLαs expression varied among different samples, paternal contribution ranging from 43.0 to 99.9%. Sample-to-sample variation in paternal XLαs expression was also detected in bone (83.7–99.6%) and cerebellum (83.8 to 100%) but not in cultured calvarial osteoblasts (99.1 ± 0.1%). Osteoblastic differentiation of BMSCs shifted the paternal XLαs expression from 83.9 ± 1.5% at baseline to 97.2 ± 1.1%. In two human BMSC samples grown under osteoinductive conditions, XLαs expression was also predominantly monoallelic (91.3 or 99.6%). Thus, the maternal GNAS contributes significantly to XLαs expression in BMSCs but not osteoblasts. Altered XLαs activity may thus occur in certain cell types irrespective of the parental origin of a GNAS defect.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bingfa Sun ◽  
Dan Feng ◽  
Matthew Ling-Hon Chu ◽  
Inbar Fish ◽  
Silvia Lovera ◽  
...  

AbstractDopamine D1 receptor (D1R) is an important drug target implicated in many psychiatric and neurological disorders. Selective agonism of D1R are sought to be the therapeutic strategy for these disorders. Most selective D1R agonists share a dopamine-like catechol moiety in their molecular structure, and their therapeutic potential is therefore limited by poor pharmacological properties in vivo. Recently, a class of non-catechol D1R selective agonists with a distinct scaffold and pharmacological properties were reported. Here, we report the crystal structure of D1R in complex with stimulatory G protein (Gs) and a non-catechol agonist Compound 1 at 3.8 Å resolution. The structure reveals the ligand bound to D1R in an extended conformation, spanning from the orthosteric site to extracellular loop 2 (ECL2). Structural analysis reveals that the unique features of D1R ligand binding pocket explains the remarkable selectivity of this scaffold for D1R over other aminergic receptors, and sheds light on the mechanism for D1R activation by the non-catechol agonist.


2021 ◽  
Vol 53 (4) ◽  
pp. 150-159
Author(s):  
Sonia Sebastian ◽  
Muriel Nobles ◽  
Elena Tsisanova ◽  
Andreas Ludwig ◽  
Patricia B. Munroe ◽  
...  

We have assessed the role of ric-b8 in the control of heart rate after the gene was implicated in a recent genome-wide association study of resting heart rate. We developed a novel murine model in which it was possible to conditionally delete ric-8b in the sinoatrial (SA) node after the addition of tamoxifen. Despite this, we were unable to obtain homozygotes and thus studied heterozygotes. Haploinsufficiency of ric-8b in the sinoatrial node induced by the addition of tamoxifen in adult animals leads to mice with a reduced heart rate. However, other electrocardiographic intervals (e.g., PR and QRS) were normal, and there was no apparent arrhythmia such as heart block. The positive chronotropic response to isoprenaline was abrogated, whereas the response to carbachol was unchanged. The pacemaker current If(funny current) has an important role in regulating heart rate, and its function is modulated by both isoprenaline and carbachol. Using a heterologous system expressing HCN4, we show that ric-8b can modulate the HCN4 current. Overexpression of ric-8b led to larger HCN4 currents, whereas silencing ric-8b led to smaller currents. Ric-8b modulates heart rate responses in vivo likely via its actions on the stimulatory G-protein.


Author(s):  
Harald Jüppner

Abstract Pseudohypoparathyroidism (PHP) and pseudopseudohypoparathyroidism (PPHP) are caused by mutations and/or epigenetic changes at the complex GNAS locus on chromosome 20q13.3 that undergoes parent-specific methylation changes at several differentially methylated regions (DMRs). GNAS encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. PHP type Ia (PHP1A) is caused by heterozygous inactivating mutations involving the maternal exons 1-13. Heterozygosity of these maternal GNAS mutations cause PTH-resistant hypocalcemia and hyperphosphatemia because paternal Gsα expression is suppressed in certain organs thus leading to little or no Gsα protein in the proximal renal tubules and other tissues. Besides biochemical abnormalities, PHP1A patients show developmental abnormalities, referred to as Albright’s hereditary osteodystrophy (AHO). Some, but not all of these AHO features are encountered also in patients affected by PPHP, who carry paternal Gsα-specific mutations and typically show no laboratory abnormalities. Autosomal dominant PHP type Ib (AD-PHP1B) is caused by heterozygous maternal deletions within GNAS or STX16, which are associated with loss of methylation at the A/B DMR alone or at all maternally methylated GNAS exons. Loss of methylation of exon A/B and the resulting biallelic expression of A/B transcript reduces Gsα expression thus leading to hormonal resistance. Epigenetic changes at all differentially methylated GNAS regions are also observed in sporadic PHP1B, which is the most frequent PHP1B variant. However, this disease variant remains unresolved at the molecular level, except for rare cases with paternal uniparental isodisomy or heterodisomy of chromosome 20q (patUPD20q).


2021 ◽  
Author(s):  
Anna Spada ◽  
Giovanna Mantovani ◽  
Donatella Treppiedi ◽  
Federica Mangili ◽  
Rosa Catalano ◽  
...  

Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial neoplasms. Although generally benign, they can show a clinically aggressive course, with local invasion, recurrences and resistance to medical treatment. No universally accepted biomarkers of aggressiveness are available yet, and predicting clinical behavior of PitNETs remains a challenge. In rare cases the presence of germline mutations in specific genes predisposes to PitNETs formation, as part of syndromic diseases or familial isolated pituitary adenomas (FIPA), and associates to more aggressive, invasive and drug resistant tumors. The vast majority of cases is represented by sporadic PitNETs. Somatic mutations in the  subunit of stimulatory G protein gene (gsp) and in the ubiquitin-specific protease 8 (USP8) gene have been recognized as pathogenetic factors in sporadic GH- and ACTH-secreting PitNETs, respectively, without an association with a worse clinical phenotype. Other molecular factors have been found to significantly affect PitNETs drug responsiveness and invasive behavior. These molecules are cytoskeleton and/or scaffold proteins whose alterations prevent proper functioning of the somatostatin and dopamine receptors, targets of medical therapy, or promote the ability of tumor cells to invade surrounding tissues. The aim of the present review is to provide an overview of the genetic and molecular alterations that can contribute to determine PitNETs clinical behavior. Understanding subcellular mechanisms underlying pituitary tumorigenesis and PitNETs clinical phenotype will hopefully lead to identification of new potential therapeutic targets and new markers predicting the behavior and the response to therapeutic treatments of PitNETs.


Sign in / Sign up

Export Citation Format

Share Document